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Mutation testing injects code changes to check whether tests can detect them. Mutation 
testing tools use mutation operators that modify program elements such as operators, 
names, and entire statements. Most existing mutation operators focus on imperative 
and object-oriented language constructs. However, many current projects use meta-
programming through code annotations. In a previous work, we have proposed nine 
mutation operators for code annotations focused on the Java programming language. In 
this article, we extend our previous work by mapping the operators to the C# language. 
Moreover, we enlarge the empirical evaluation. In particular, we mine Java and C# projects 
that make heavy use of annotations to identify annotation-related faults. We analyzed 200 
faults and categorized them as “misuse,” when the developer did not appear to know how 
to use the code annotations properly, and “wrong annotation parsing” when the developer 
incorrectly parsed annotation code (by using reflection, for example). Our operators mimic 
95% of the 200 mined faults. In particular, three operators can mimic 82% of the faults in 
Java projects and 84% of the faults in C# projects. In addition, we provide an extended and 
improved repository hosted on GitHub with the 200 code annotation faults we analyzed. 
We organize the repository according to the type of errors made by the programmers 
while dealing with code annotations, and to the mutation operator that can mimic the 
faults. Last but not least, we also provide a mutation engine, based on these operators, 
which is publicly available and can be incorporated into existing or new mutation tools. 
The engine works for Java and C#. As implications for practice, our operators can help 
developers to improve test suites and parsers of annotated code.
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1. Introduction

Mutation testing [1,19,28]—also known as program mutation, or simply mutation—is a fault-based testing criterion that 
has been investigated for more than four decades [42,46] and has two main goals: measuring the effectiveness of test 
suites [19,37], and evaluating the software itself (when faults are revealed during the test process) [37]. The criterion 
requires the creation of copies of the original program where each one contains a small program modification. The resulting 
programs are called mutants. In this context, the test suite needs to distinguish the behavior of the mutant from the behavior 
of the original program for at least one test case. If that happens, the mutant is said to be killed; otherwise, the mutant 
remains alive and must be analyzed. The analysis of a mutant may point out to a need for a new test case to kill the mutant, 
or may lead to the conclusion that the mutant is equivalent to the original program and, as such, must be discarded. The 
quality of a test suite regarding a set M of mutants is given by the mutation score (M S), which represents a coverage 
measure for the mutation testing criterion. M S is the ratio of killed mutants (K ) with respect to M , except the set E of 
equivalent mutants; that is, M S = K /(M-E). M S is a value in the interval [0, 1]; the closer to 1, the better the test set with 
respect to M .

Empirical studies have demonstrated that mutation testing is an effective technique in revealing faults [10,33]. The 
effectiveness of mutation testing largely depends on the transformations (i.e., the applied to the original program to create 
the mutants) made by the mutation testing tool. To perform these transformations, the tools rely on specific rules known 
as mutation operators.

The majority of mutation operators have focused on imperative language constructs [30,40,42] and on object-oriented 
constructs [18,23,34]. However, many projects now make use of meta-programming through code annotations. Indeed, code 
annotations have become very popular and induced several important frameworks such as Hibernate [8], Spring [31], and 
JUnit [50] to redesign their interfaces. In this context, developers are facing bugs related to annotations, as demonstrated 
along this article. Such bugs can be categorized as misuse and wrong annotation parsing [44]. The former means that the 
developer does not know how to use the code annotation in a proper way; the latter means that the developer wrongly 
parses the annotated code, using reflection, for instance.

The lack of mutation operators for code annotations motivated us to propose and design these operators in a recent 
paper [44]. In that paper we proposed a set of mutation operators for Java programs to mimic code annotation-related 
faults. The set includes nine mutation operators, such as Add Annotation (ADA), Remove Annotation (RMA), and Remove 
Attribute (RMAT). Our operators can support developers in improving their test suites and avoiding code annotation-related 
faults. The initial evaluation of our mutation operators showed that they are able to mimic 95 (out of 100) code annotation-
related faults mined from open source Java projects.

This article extends our prior work in several ways. Firstly, it maps the mutation operators to the C# language (Section 3). 
The contributions of such mapping are two-fold: (i) it improves the generality of our mutation operators by considering two 
languages used in projects that make heavy use of code annotations; and (ii) it demonstrates that the definitions of the 
operators are consistent with our prior research [44]. Secondly, this article reports on enlarged empirical evidence regarding 
the ability of the operators to mimic code annotation-related faults for the two targeted languages (Java and C#) (Section 4). 
The enlarged evaluation considers 200 code annotation-related faults. We also provide an extended and improved (when 
compared to a preliminary version reported in our prior work) repository1 hosted on GitHub with the 200 code annotation 
faults we analyzed (Section 4.2.1). We organize the repository according to the type of errors made by the programmers 
while dealing with code annotations, and the mutation operator that can mimic the faults. The results of our enlarged 
evaluation shows that the operators can mimic 190 (out of 200) faults present in our repository, i.e., 95% (Section 4.2.2). 
Last but not least, this article introduces a mutation engine2 that automates the application of the operators to Java and C# 
programs (Section 5).

When presenting the operators in Section 3, we also discuss some mutations that may result in useless (that is, 
unproductive) mutants [25,43] (e.g., redundant and equivalent mutants). These mutants may demand high effort to be 
identified [36,48]. We present and discuss simple strategies to avoid the generation of such mutants. We argue that imple-
menting these strategies in the mutation engine is important to reduce costs. In fact, our engine provides configuration files 
so that developers can configure it to avoid the generation of these mutants as described in Section 5.

Before presenting the contributions, the next section describes a motivating example.

2. Background

In this section we present background on code annotations. Then, we present a motivating example to demonstrate the 
need for mutation operators for code annotations.

1 The repository is available at <https://github .com /easy-software -ufal /annotations _repos /issues>.
2 The mutation engine is publicly available at <https://github .com /easy-software -ufal /mutation -tool -for-annotations>.

https://github.com/easy-software-ufal/annotations_repos/issues
https://github.com/easy-software-ufal/mutation-tool-for-annotations
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2.1. Code annotations

Code annotations provide a powerful method to associate meta-data or declarative information with code. Annotations 
allow programmers to minimize the number of lines of code to express and implement a solution, which might reduce 
costs during the software development. In Java, frameworks widely used in practice such as Hibernate [8], Spring [31], and 
JUnit [50] quickly adopted annotations and had their interfaces redesigned by the developers. Similarly, C# frameworks such 
as NUnit [39] have been following the same trend. This way, users of these frameworks need to deal and have knowledge 
about several annotations.

Developers can use annotations in classes, fields, methods, and so forth. Code annotations are useful to:

• provide information to the compiler to detect errors (e.g., @Override) and suppress warnings (e.g., @SuppressWarn-
ings);

• guide code generation and other artifacts (e.g., @Getter, @Setter, @AllArgsConstructor from the Lombok3

project);
• trigger runtime processing (e.g., @Test from JUnit);
• apply characteristics to a declaration (e.g., [Serializable] in a C# class);
• define program contracts (e.g., [ContractClassFor] in Spec#);
• improve code inspection; etc.

When creating a new annotation, developers need to define the target to restrict to which elements the annotation 
can be applied. For example, targets for the @NotNull annotation include attributes and method parameters. The target 
information is important to design and implement mutation operators, as we shall see next.

2.2. Motivating example

When using mutation testing tools, we rely on mutation operators to create mutants. For example, widely used mutation 
testing tools such as Mujava [35], Major [32], and Pit [13] have operators to change boolean expressions (e.g., if (x == 
0) {...} is transformed to if (x != 0) {...}) and to replace literal values (e.g., x = x + 1 is transformed to x 
= x + 0).

In this sense, previous research claims that most mutation operators have been developed for procedural programs [11,
34]. As such, researchers extended the operators to also take into account object-oriented features such as inheritance 
and polymorphism. In a previous work, we followed this tendency of evolving mutation operators [44]. In particular, we 
presented operators for code annotations focused on the Java language.

To better explain the need for these operators, we now present a motivating example. Fig. 1 illustrates a domain class 
named User (at the top of the figure). This class contains annotations related to the Java Persistence API (JPA) and the
javax.validation package to perform validations. Notice that the name field must be not null (see the @NotNull
annotation). In addition, at the left-hand side, we have a test suite that contains a test to check the persistence of an User
object by calling the save method. This original test suite passes (1). If the developer accidentally removes the @NotNull
annotation (see the bottom of the figure), the test still passes (2). Thus, the test suite is not testing a situation where the
name field is null. Thus, we need to improve our test suite to consider a new test case to deal with this situation. At the 
right-hand side, a new test case—saveNullUser method—tries to persist an User object with a null name. Then, the 
expected validation exception is thrown (ConstraintViolationException) and the test fails (3).

It is important to highlight that this whole scenario matches the mutation testing process. Here, the mutant is a slightly 
modified version of the User class (particularly, without the @NotNull annotation) and the original version of our test 
suite passes; that is, the mutant survives. To kill this mutant, we need to improve the test suite.

Notice that we introduced the example presented in Fig. 1 just to explore a scenario of a missing annotation. However, 
faults like the one illustrated in Fig. 1 might be more frequent in case developers overuse annotations. Fig. 2 illustrates 
an example of such overuse. We extracted this code snippet from the social-network-spring project.4 In the code snip-
pet, there are several annotations that deal with persistence (e.g., @Entity and @Table) and class-specific methods (e.g.,
@ToString). In addition, there are annotations to generate code (e.g., @Getter and @NoArgsConstructor). This way, 
the overuse of annotations might lead to code pollution, a problem referred as “annotation hell” [47]. Consequently, devel-
opers might find the code difficult to read and understand.

To mimic faults related to annotations and induce improvements in the test suites, in the next section we present a 
set of mutation operators for code annotations [44]. Our operators are able to mimic faults like the one we present in this 
section, i.e., the removal of an annotation.

3 https://projectlombok.org/ – accessed in February/2020.
4 https://github .com /ASaunin /social -network-spring /blob /master /api /src /main /java /org .asaunin .socialnetwork /domain /Message .java – accessed in Febru-

ary/2020.

https://projectlombok.org/
https://github.com/ASaunin/social-network-spring/blob/master/api/src/main/java/org.asaunin.socialnetwork/domain/Message.java
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Fig. 1. Motivating example: the original test suite still passes against a mutant without the @NotNull annotation. This way, we need improve the test 
suite to kill the mutant, i.e., we create a new test method: saveNullUser.

Fig. 2. Overuse of annotations.

3. Mutation operators for code annotations

In our previous paper [44], we introduced a set of mutation operators for code annotations and provided examples of 
their application to Java constructs. In comparison with our previous paper, here we map our operators to C# programs as 
well. For this, we improve the description of our operators and show how they can be applied to C# programs. Initially we 
present the operators and examples of how they work (Section 3.1). In this paper we also contribute with two examples—
using two real-practice classes and their corresponding tests—thus demonstrating that our mutation operators can help 
developers to improve their test suites (Section 3.2).

3.1. Mutation operators

A mutation operator is a rule for syntax transformations in a program [30]. Classical mutation operators modify the 
program by inserting, removing, and replacing operators (arithmetic, logical or relational), statements, variables, expressions, 
etc. Previously, we have proposed nine operators based on potential mistakes that a developer can make when dealing with 
code annotations [44]. The operators were designed by relying on (i) the authors’ expertise in using annotations, as well as 
on (ii) possible—syntactically correct—misuse of programming constructs (namely, annotations). Notice that the latter case 
is a typical approach for mutation operator design, as done in past research [2,34]. To the best of our knowledge, this is the 
first set of mutation operators for code annotations in the literature.
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We now proceed by presenting each operator. In each case, we present the acronym, name, and how the operator works. 
Explaining how they work is important to guide the development of a mutation engine that implements our operators, 
similar to the one we present in Section 5. Once again, we emphasize that the faults introduced by any mutation operator 
are intended to mimic typical mistakes made by programmers. The test suites should be sensitive enough to reveal those 
mimicked faults (i.e., to detect the mutants), therefore increasing the confidence in both the program under test and the 
test suite. To present our operators, we follow the Java and C# notations for code annotations, i.e., we use “@” and “[]”, 
respectively. We also discuss some strategies to avoid the generation of useless mutants.

ADA - Add Annotation - The ADA operator adds a new code annotation to a valid target. For example, in the case 
where we add a code annotation to a class, we may change the way that frameworks and libraries “see” that class and 
the way the class works. For example, in C#, adding [Serializable]5 to a class indicates that instances of this class can be 
serialized. Notice that the number of application possibilities of this operator can grow fast.6 In this way, this operator can 
create useless mutants and guide the construction of meaningless tests. Hence, a mutation engine should be aware of the 
annotations and their potential valid targets. For instance, the engine could avoid adding @Cleanup7 to variables in which 
their corresponding objects do not have a close() method. Generic examples of how ADA can produce mutants for Java 
and C# programs are:

Original Code (Java) ADA Mutant

class C {...} @A class C {...}

Original Code (C#) ADA Mutant

class C {...} [A] class C {...}

ADAT - Add Attribute - The ADAT operator adds a valid attribute to the code annotation. To apply this operator, the 
mutation engine needs to know the annotation beforehand, i.e., the attributes that the annotation supports, which ones 
can change the behavior if added, and potential values for the attributes to be added. For example, the @CrossOrigin
annotation (provided by Spring.8) has multiple attributes (seven in total) such as origins, maxAge, and allowCreden-
tials, allowing multiple configurations and potentially leading to several useless mutants. Generic examples of how ADAT 
can produce mutants for Java and C# programs are:

Original Code (Java) ADAT Mutant

@A(x = y) @A(x = y, a = b)

Original Code (C#) ADAT Mutant

[A(x = y)] [A(x = y, a = b)]

CHODR - Change Order - The CHODR operator changes the order of two code annotations. This operator is important 
to deal with cases in which developers are parsing annotated code. A different order might cause a different behavior 
when performing the parsing. Notice, however, that this operator may generate a high number of useless mutants. Generic 
examples of how CHODR can produce mutants for Java and C# programs are:

Original Code (Java) CHODR Mutant

@A @B @B @A

Original Code (C#) CHODR Mutant

[A] [B] [B] [A]

5 https://docs .microsoft .com /en -us /dotnet /api /system .serializableattribute – accessed in February/2020.
6 To create an approximation for the complexity of the ADA operator, consider that a mutation engine can use the operator to add only the n annotations 

that are already present in the code. Given that the source code contains m targets, the number of potential mutants is O(n * m).
7 https://projectlombok.org /features /Cleanup – accessed in February/2020.
8 https://docs .spring .io /spring -framework /docs /current /javadoc -api /org /springframework /web /bind /annotation /CrossOrigin .html – accessed in Febru-

ary/2020.

https://docs.microsoft.com/en-us/dotnet/api/system.serializableattribute
https://projectlombok.org/features/Cleanup
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/CrossOrigin.html
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RMA - Remove Annotation - The RMA operator removes a code annotation. This operator is useful, for instance, to 
introduce the fault presented in Fig. 1. Generic examples of how RMA can produce mutants for Java and C# programs are:

Original Code (Java) RMA Mutant

@A class C {...} class C {...}

Original Code (C#) RMA Mutant

[A] class C {...} class C {...}

RMAT - Remove Attribute - The RMAT operator removes an attribute from a code annotation. Therefore, we can see this 
operator as the reverse transformation of the ADAT operator. To avoid useless mutants when applying this operator, the 
mutation engine must avoid the removal of attributes that do not change the observable behavior. Generic examples of how 
RMAT can produce mutants for Java and C# programs are:

Original Code (Java) RMAT Mutant

@A(x = y, a = b) @A(x = y)

Original Code (C#) RMAT Mutant

[A(x = y, a = b)] [A(x = y)]

RPA - Replace Annotation - The RPA operator replaces one code annotation by another. Notice that this operator suffers 
from the same problem as the ADA operator, i.e., the number of annotations to be added is potentially very high. Therefore, 
mutation engines should select a meaningful annotation to replace the actual one, avoiding useless mutants. For example, 
instead of replacing @NotNull by @Entity9 (which is meaningless), the engine could replace by @Nullable, i.e., the 
annotation with the opposite behavior. Generic examples of how RPA can produce mutants for Java and C# programs are:

Original Code (Java) RPA Mutant

@A @B

Original Code (C#) RPA Mutant

[A] [B]

RPAT - Replace Attribute - The RPAT operator replaces a code annotation attribute by another. Like the RPA operator, the 
number of transformations available for this operator is high. In addition, to perform meaningful replacements, the engine 
should be aware of the attributes that the annotations support. For example, the @EqualsAndHashCode annotation of 
the Lombok project has the of and exclude attributes. This way, the mutation engine could replace of by exclude, 
thus changing the fields used to generate the equals and hashCode methods. The engine, on the other hand, must avoid 
replacing of by name, for example, since the latter does not exist in the @EqualsAndHashCode annotation. Generic 
examples of how RPAT can produce mutants for Java and C# programs are:

Original Code (Java) RPAT Mutant

@A(x = y) @A(a = b)

Original Code (C#) RPAT Mutant

[A(x = y)] [A(a = b)]

9 @Entity is an annotation of the Java Persistence API.
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RPAV - Replace Attribute Value - The RPAV operator replaces a code annotation attribute value by another. To perform 
meaningful replacements and at the same time reduce costs, a mutation engine should be aware of the default and non-
default values of an attribute. For example, the Lombok project has the @RequiredArgsConstructor code annotation 
responsible for generating constructors based on the class fields. This annotation has an optional attribute: the access at-
tribute. The default value of this attribute is AccessLevel.PUBLIC. In this context, the engine could, for example, replace 
this value by non-default values, such as AccessLevel.PROTECTED and AccessLevel.PRIVATE. Generic examples 
of how RPAV can produce mutants for Java and C# programs are:

Original Code (Java) RPAV Mutant

@A(x = y) @A(x = a)

Original Code (C#) RPAV Mutant

[A(x = y)] [A(x = a)]

SWTG - Switch Target - The SWTG operator modifies the annotation target where a code annotation is inserted. For 
example, SWTG can move a code annotation from a field to a method. Generic examples of how SWTG can produce mutants 
for Java and C# programs are:

Original Code (Java) SWTG Mutant

@A int v; int v;
int getV (){...} @A int getV (){...}

Original Code (C#) SWTG Mutant

[A] int v; int v;
int getV (){...} [A] int getV (){...}

3.2. Usefulness of annotation-based mutation operators

To illustrate that our mutation operators are able to generate mutants that indeed would help developers to improve 
their test suites, we now present two examples based on two classes we selected from the projects we analyze in Section 4. 
To select the classes, we considered the following criteria:

• The classes must have associated tests;
• The classes must have several annotations in which it is possible to apply almost or all mutation operators we propose.

We searched for one class written in Java and one class written in C#. We have selected the first two classes we found 
that met the above mentioned criteria. The first class is from the dropwizard project and is written in Java. The second class 
is from the OchardCore project and is written in C#.

The class from the dropwizard project is ServerPushFilterFactory and its corresponding test class is Server-
PushFilterFactoryTest. The latter contains JUnit tests to test the former, all created by the dropwizard developers. 
The ServerPushFilterFactory class has six fields, five getter methods, and five setter methods. In addition, there 
is a method named addFilter. Three fields and all getter and setter methods contain annotations. Fig. 3 illustrates the
ServerPushFilterFactory class. The ServerPushFilterFactoryTest class has five test methods.

We executed the Pit tool [12,13], a well-known mutation testing tool for Java, to generate mutants of the Server-
PushFilterFactory class. Pit generated 90 mutants. Then, we used our mutation operators to create mutants based 
on annotations. To do so, we applied each of our mutation operators to generate one mutant each. This resulted in eight 
mutants of the ServerPushFilterFactory class. We could not apply one operator (i.e., RPAT) because no annotations 
of the class have attributes. Table 1 illustrates the mutations.

Afterwards, we executed the test methods of the ServerPushFilterFactoryTest class. The tests killed 78 mutants 
generated by the Pittool. This means that the eight mutants generated with our mutation operators for code annotations 
remained alive. This scenario illustrates that our operators might be useful to improve the test suite of a program, which 
is the most important objective of applying mutation testing. We then wrote six more test methods and our eight mutants 
were killed. This is important to mention because our tests demonstrate that our eight mutants are not equivalent.

As mentioned, we also performed a similar study on a class in C# (i.e., ApiController from the OchardCore project). 
To select this class, we used the same criteria presented at the beginning of this section. Fig. 4 presents this class. We 
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Fig. 3. ServerPushFilterFactory class from the dropwizard project.

Table 1
Mutations performed by eight of our mutation operators in the ServerPushFilterFactory class.

Operator Performed mutation

ADA Add @Nullable to the setRefererPorts method
ADAT Add inclusive = false to the @MinDuration annotation
CHODR Change order of the annotations declared at the getRefererPorts method
RMA Remove @Nullable from the refererHosts method
RMAT Remove TimeUnit.MILLISECONDS from the @MinDuration annotation
RPA Replace @Nullable by @NotNull at the refererHosts method
RPAV Replace 1 by 5 at the attribute value of the @MinDuration annotation
SWTG Moved @JsonProperty from the isEnabled method to the enabled field

executed the VisualMutator tool [45] to generate mutants of the ApiController class. The tool generated 328 mutants. 
Afterwards, we applied our mutation operators for code annotations. Again, we applied our mutation operators to generate 
one mutant each. We created seven mutants. In particular, we could not apply two operators (i.e., RPAT and SWTG). Table 2
summarizes the mutations we applied.

Then, we executed the test suite against the mutants. The tests killed 247 mutants, i.e., 246 generated by the VisualMu-

tator tool and one mutant based on code annotations. This particular mutant was generated using the RPAV operator. 
It changed the value of the AuthenticationScheme attribute from [Authorize(AuthenticationSchemes = 
“Api”) to [Authorize(AuthenticationSchemes = “api”). This mutation implies that the server is prevented 
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Fig. 4. ApiController class from the OchardCore project.

Table 2
Mutations performed by seven of our mutation operators in the ApiController class.

Operator Performed mutation

ADA Add [ProducesResponseType(StatusCodes.Status404NotFound)] to Post method
ADAT Add Roles = “Admin” to [Authorize]
CHODR Change order of the annotations declared at ApiController class
RMA Remove [HttpDelete] from Delete method
RMAT Removes AuthenticationSchemes = “Api” from [Authorize]
RPA Replace [HttpGet] for [HttpPost] at Get method
RPAV Replace value for AuthenticationSchemes, at [Authorize], from “Api” to “api”

from authenticating clients, thus, sending a POST request to the api/content endpoint fails. An existing test case that fo-
cuses on authentication killed this mutant.

Again, to guarantee that our mutants are not equivalent, we wrote test cases to kill them.

4. Evaluation

In this section, we evaluate the mutation operators by investigating whether they can mimic realistic faults related 
to annotations. To do so, we analyze 200 code annotation-related faults, 100 in Java projects and 100 in C# projects. In 
what follows, we detail our evaluation. We first present the settings of our analysis (Section 4.1) and then the results 
and discussion (Section 4.2). Next, we present the threats to the validity of our study (Section 4.3). Last, we discuss the 
implications for the practical application of our operators (Section 4.4).
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4.1. Settings

To evaluate the effectiveness of our mutation operators, we needed a comprehensive set of real faults. Thus, we searched 
for real-practice faults related to code annotations. In particular, we focused on Java and C# projects hosted on GitHub. 
To perform the search, we used the GitHub Search API [27]. The API helped us to select closed issues labeled as “bug” or 
“defect.” In addition, at the issue title and body, we searched for the words “annotation” or “attribute,” and for words that 
match the regular expressions @[A-z]+ or (\[\w+\])+, since these expressions match the notations used by Java and 
C# for using code annotations, respectively.

To confirm whether the issues are indeed related to annotations, we performed a manual analysis. To do so, for each 
issue, we analyzed the fixing commit and the messages the developers posted regarding the issue. To make our manual 
analysis feasible, we stopped once we reached 200 confirmed code annotation-related faults. Two researchers individually 
analyzed the issues to confirm that the faults are indeed related to annotations. In case the researchers disagreed, we dis-
regarded such a fault. For each fault, the researchers reviewed the code before and after the fixing commit. When provided, 
the researchers analyzed the regression tests that prevent the faults as well. The idea here was to follow the opposite path 
of the bug fix, i.e., given the fixed code, is there any mutation operator (from Section 3) able to create a mutant that mimics 
the fault that has been fixed?

In this evaluation, we answer the following research questions:

• RQ1: How many code annotation-related faults are our mutation operators able to mimic?
• RQ2: Is there a set of operators that is able to mimic the great majority of the faults?
• RQ3: What are the operators that mimic few faults or even no faults at all?
• RQ4: Are there code annotation-related faults that our operators are not able to mimic?
• RQ5: Are the operators representative enough to mimic faults in both the Java and C# languages?

Answering RQ1 is important to understand to what extent our operators are useful in practice. Answering RQ2 and
RQ3 is important to guide potential mutation testing tools. For example, the tool could disregard operators that mimic 
few faults or no fault whatsoever, and consider operators responsible for simulating many faults instead. Answering RQ4 is 
important to check whether new operators should be proposed. Finally, answering RQ5 is important to check how generic 
our operators are with respect to different programming languages.

In what follows, we answer our research questions and discuss the results.

4.2. Results and discussion

After applying our search criteria in the GitHub issues, we ended up with 4,171 issues in 1,337 Java projects and 2,662 
issues in 914 C# projects. We manually analyzed a subset of these issues in a random way to confirm that they are indeed 
related to code annotations. We stopped once we have reached 200 code annotation-related faults across Java and C# 
projects (i.e., 100 for each language). To reach 200 faults, we have analyzed 5,508 out of 6,833 issues (80%). These faults are 
from 125 projects—66 written in Java and 59 written in C#. Tables 3 and 4 show the number of faults per project, for Java 
and C#, respectively.

4.2.1. Repository of code annotation-related faults
To better organize the study and the results, during our manual analysis we have extended and improved our GitHub 

repository with the 200 annotation-related faults we analyzed.10 We also provide the scripts we have used to mine code 
annotation-related fault candidates.11 We have 200 issues in our repository, each one corresponding to one specific fault. 
Our issues contain the links to the original issues and to the commits that fixed them.

During our manual analysis, we classified the faults into two categories:

• Misuse: developers misunderstand how the code annotation works and they use it in a wrong way. For example, the 
developer removes a code annotation that could not be removed, forgets to include a code annotation attribute, or even 
combines two code annotations in which the first overrides the behavior of the second; and

• Wrong annotation parsing: developers commonly use techniques like Java reflection to check whether a class has a 
certain code annotation, for instance. Wrongly parsing the annotated code might lead to failures. Examples of wrong 
code annotation parsing include forgetting to check if the former has a certain attribute and forgetting to check whether 
the attribute has a certain value.

To indicate the category of each fault in our repository, we labeled each issue as misuse or wrong annotation parsing. In 
addition, we labeled each issue with the operator that can mimic it (e.g., ADA, RMA, RPAV, etc). We use the label no operator

10 https://github .com /easy-software -ufal /annotations repos /issues.
11 https://github .com /easy-software -ufal /annotations _repos /tree /master /Miner.

https://github.com/easy-software-ufal/annotations repos/issues
https://github.com/easy-software-ufal/annotations_repos/tree/master/Miner
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Table 3
The 100 faults we analyzed, found in 66 Java projects.

Project Domain Operators Faults Frequency

abixen-platform Microservice API. RMA 1
achieve-lib-api Multipurpose library. RPAV 1
Achilles Object mapping framework. RPAV 1
actframework Web server API. CHODR, ADA 6
ametiste-metrics Metric gathering library. ADA 1
android-state Utility library. ADA 1
arquillian-cube Container management. ADA 1
BatooJPA Persistence API. SWTG, ADA 3
bazel Build system. RPAV 1
blaze-persistence Criteria API. ADA 1
cas Authentication protocol. RMA 1
cofoja Contract programming framework. ADA 1
concordion Documentation tool. ADA 1
crux Web application framework. RPAV, ADA 2
damapping DA mapping framework. ADA 2
docdoku-plm Product lifecycle management. RPAV 1
dropwizard Web service API. RMA, ADA 5
incubator-druid Data store API. RMA 1
eFapsApp-Commons Generic software core library. RPA 1
elasticsearch Search engine. RMA 1
elide Web service API. RMA 1
enunciate Auxialiar code generation. RMA, ADA 3
ff4j Feature flags library. ADA 1
flow Web application framework. ADA 1
framework Web application framework. ADA 4
fscrawler File system crawler. ADA 1
gatk Genome analysis toolkit. ADA 1
genie Distributed Big Data Orchestration Service. RPAV 2
guava Core libraries. ADA 1
gwtquery Web development API. RMA, RPAV 2
hibernate-hydrate Duct-tape fix library. - 1
jDTO-Binder DTO framework. ADAT, ADA 2
LoganSquare Serialization library. ADA 2
mapstruct Annotation processor. ADA 4
material-dialogs Dialogs API. RPAV 1
needle Unit testing framework. RMA 1
netty Network application framework. RMA 1
NotRetrofit REST client. ADA 1
org.parallelj Parallel computing runtime. RPAV 1
Pericopist Message catalogs generation tool. RPAV 2
podam Mocking library. ADA 1
presto SQL query engine. RMA 2
qbit Microservice library. ADA 1
riak-java-client Database client. ADA 2
RoboSpock Testing framework. CHODR 1
smarthome Development framework. RPA 1
sniffy Profiler. ADAT 1
vaadin/spring Glue library. ADA 1
spring-boot Spring Boot. RMAT, RPAV 2
spring-cloud-config Configuration library. - 1
spring-cloud-consul Spring Cloud Consul. ADA 1
spring-data-jest Spring Data Implementation for Jest. ADA 1
spring-security Spring Security. RPAV 1
springlets Utilities library. ADA 1
stag-java Speedy Type Adapter Generation. ADA 1
swagger4spring-web Glue library. ADAT 3
teasy UI automation testing framework. ADA 1
thindeck Web Hosting. RMA 2
transfuse Dependency Injection framework. ADA 1
vertx-mongo-client Mongo Client. RMA 1
video-recorder-java UI testing video recording Library. RPAV 1
vraptor Web framework. ADA 1
vraptor4 Web and CDI framework. ADA 1
wildfly-camel Glue code library. ADA 1
wisdom Web framework. ADA 2
xstream Serialization library. ADAT, ADA 2

TOTAL 100
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Table 4
The 100 faults we analyzed, found in 59 C# projects.

Project Domain Operators Faults Frequency

AgodaAnalyzers Software development utility. ADA 1
aspnet-api-versioning Web development library. ADA 2
Autofac Software development utilities. RMA, ADA 4
azure-iot-protocol-gateway Framework. RMA 1
azure-webjobs-sdk Framework. RMAT, ADA 4
BenchmarkDotNet Software development utility. RPAV, ADAT, ADA 6
BetterCMS CMS. RMA 1
BinanceDotNet REST API client. RMA 1
BootstrapTagHelpers Web development library. ADA 1
Cake.OctoDeploy Software development utility. RMA 1
Caliburn.Micro Application development framework. RMA 1
ClearCanvas Software development libraries. ADA 1
clipr Software development library. ADA 1
CodeOnlyStoredProcedures Software development library. ADA 1
CommandLineUtils Software development library. RPAV 1
Cosmonaut SDK. ADA 1
couchbase-lite-net Database engine. RMA 1
csharp-api-sdk SDK. ADA 1
duality Game development framework. ADA 1
EDI.Net Software library. RPAV 1
elasticsearch-net Search engine. ADAT, RMA, ADA 5
ReversePoco Software development utility. RMA 1
bridgedotnet/Frameworks Software development library. RMA 2
Hangfire.RecurringJobExtensions Software development library. RPAV 1
JsonApiDotNetCore Framework. ADA 2
JsonPatch Software development library. RMAT 1
language-ext Software development library. CHODR 1
QuantConnect/Lean SDK. RMA 1
MetaWear-SDK-CSharp SDK. RMA 1
SqlTableDependency Software development library. ADAT 1
aspnet/Mvc Web development framework. RPAV, RMA, RPA, ADA 11
NakedObjectsFramework Software development framework. RMA, ADA 3
Neo4jClient Database client. ADA 1
NServiceBus Software library. ADA 2
octokit.net REST API client library RPAV 1
opencover Software development utility. ADA 1
OrchardCore CMS. ADA 1
poshtools Software development utility. RMAT 1
PowerArgs Software library. ADA 1
PyriteServer Software application. RMA 1
QCVOC Software application. RMAT 1
RefactoringEssentials Software development utility. ADA 1
RestSharp Software library. ADA 1
Rosetta Software development utility. RPAV 1
roslyn Compiler. ADA 5
aspnet/Routing Web development. RPAV 2
Scrutor Software development utility. NaN 1
aspnet/Security Web development. RPAV, ADA 2
SHFB Software development utility. RPAV 1
SkiaSharp Graphics API. RPAV 1
SpecFlow Software development utility. RMAT 1
spmeta2 Software development utility. RMA 1
sqlite-net Database client. RMA, ADA 4
Starcounter.Authorization Software development library. ADA 1
TheBelt Private software project. RPAV 1
Microsoft/Tx Software library. ADA 1
VaraniumSharp Software library. RMA 2
VRTK.Unity.Core Software development utility. SWTG 1
xamarin-macios SDK. ADA 1

TOTAL 100
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Fig. 5. Screenshot of part of our GitHub repository.

Table 5
Distribution of the faults according to 
the annotations parts.

Fault Frequency

Java C#

Annotation 73 72
Attribute 7 8
Attribute Value 15 15
None 5 5

TOTAL 100 100

if none of our operators is able to mimic the issue. In case the developer fixed the issue and at the same time introduced a 
test to prevent the issue from happening again, we labeled the issue with the test label. Fig. 5 illustrates five issues of our 
repository. Notice that four of them fit the wrong annotation parsing category and only one fits the misuse category (namely, 
in the guava project). To fix the issue of the dropwizard project, the developer added a test to prevent this issue in the 
future.

To the best of our knowledge, we created the first repository that stores faults related to code annotations in two 
programming languages. This repository may support further studies not only on the mutation testing topic but also on 
other research initiatives related to, for example, automatic code repair and, more generally, related to code annotations.

4.2.2. Answering the research questions
From our analysis of 200 code annotation faults, we found 51 in the misuse category and 149 in the wrong annotation 

parsing category. We found that our operators are able to mimic 190 out of the 200 faults we analyzed. Table 5 distributes 
the faults according to the parts of a code annotation, i.e., the annotation itself, attribute, and attribute value. The majority 
of the faults occurs at the code annotation itself. Table 6 presents the number of faults mimicked by each operator.

Table 7 shows the mutation operators and the two categories of faults we discuss in this article. The majority of the 
mimicked faults are related to the wrong annotation parsing category, i.e., 74.5%. The ADA and RPAV operators are more likely 
to expose faults of such category. On the other hand, RMA is the one more likely to expose faults of the misuse category, 
i.e., 79.48%.

Answer to RQ1: Our operators are able to mimic 190 out of the 200 faults (95%) we have analyzed.

Regarding RQ2, we found that three mutation operators (out of nine) are able to mimic up to 83% of all faults we 
analyzed, namely: Add Annotation (ADA), Remove Annotation (RMA), and Replace Attribute Value (RPAV).

Fig. 6 presents an example from the thindeck project.12 The original code (before the commit) does not have the @Im-
mutable annotation. This example fits into the misuse category, i.e., the developer forgot to annotate the classes. To fix 
this problem, the developer added such an annotation into four classes. The developer also created a test case to check 
immutability for these classes.

12 https://github .com /piotrkot /thindeck /commit /95bb424a38c7116b0868a16c4bfba855e6de041a – accessed in February/2020.

https://github.com/piotrkot/thindeck/commit/95bb424a38c7116b0868a16c4bfba855e6de041a
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Table 6
Number of faults mimicked by each operator.

Operator Description Frequency

Java C#

ADA
Adds annotation
to valid target

51 46

ADAT
Adds valid attributes
to annotation

6 3

CHODR
Changes the order of two
annotations

3 1

RMA
Removes an
annotation

16 23

RMAT
Removes an attribute from
annotation

1 5

RPA
Replaces an
annotation

2 1

RPAT
Replaces an attribute
by another

0 0

RPAV
Replaces an annotation
value for another

15 15

SWTG
Switches annotation to another
applicable target

1 1

No operator
Faults not mimicked by any
operator

5 5

TOTAL 100 100

Table 7
Mutation operators mapped to faults, classified as Misuse and Wrong annotation pars-
ing categories.

Operator Misuse Wrong Parsing Total faults

ADA 6.20% 93.81% 97
ADAT 0% 100% 9
CHODR 0% 100% 4
RMA 79.48% 20.51% 39
RMAT 50% 50% 6
RPA 66.66% 33.33% 3
RPAT 0 0 0
RPAV 30% 70% 30
SWTG 0 100% 2
No operator 0 100% 10

TOTAL 25.5% 74.5% 200

Fig. 6. Fault from the thindeck project (Java) that could be mimicked by our Remove Annotation (RMA) operator.

Notice that this scenario fits into the mutation testing approach: there is no test to check immutability; to apply our 
operators, we follow the mutating testing assumption: the original code must be close to the correct (cf. the Competent 
Programmer Hypothesis [19]); our Remove Annotation (RMA) operator injects a fault, i.e., it removes the @Immutable
annotation; the test suite still passes and the mutant without the annotation survives; and finally the developer creates a 
new test to check immutability and kill the mutant. This way, our operator helps to improve the test suite.
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Fig. 7. Wrong annotation parsing example from the actframework project (Java). Our Change Order (CHODR) operator can mimic this fault.

Fig. 8. Wrong annotation parsing example from the needle project (Java). Our operator Add Attribute (ADAT) is able to mimic this fault.

Answer to RQ2: Yes. Three operators are able to mimic the majority of the faults (i.e., 83%). The Add Annotation 
(ADA) mimics 97 faults, Remove Annotation (RMA) mimics 39 faults, and Replace Annotation Value (RPAV) mimics 
30 faults.

Regarding RQ3, only one operator could not mimic any fault: the Replace Attribute (RPAT) operator. The operators Add 
Attribute (ADAT), Change Order (CHODR), Remove Attribute (RMAT), Replace Annotation (RPA), and Switch Target (SWTG) 
mimicked altogether a very low number of faults: only 24 (12%). Fig. 7 illustrates a wrong annotation parsing fault example 
from the actframework project. Because the developer declared the annotations in a specific order, the code responsible for 
parsing the annotated code did not behave as expected and raised an error.13 Fig. 7 also shows the developer’s comment 
with respect to the fault. Our Change Order (CHODR) operator could mimic this situation: after changing the order, the 
parsing of the annotated code would not work as expected.

Fig. 8 illustrates an example in which the Add Attribute (ADAT) operator can mimic the fault. This example fits into the 
wrong annotation parsing category. The faulty code (left-hand side) parses the annotated code of the needle project14 and 
assigns the class name to the fromEntity variable (e.g., Address and Person) regardless of the name attribute defined 
at the @Entity annotation. The fixed code (right-hand side), on the other hand, takes the name attribute into account. In 
this way, fromEntity receives the class name in case the annotation attribute is not defined (e.g., Address). Otherwise,
fromEntity receives the attribute value (e.g., personEntity).

Answer to RQ3: Only one operator could not mimic any fault: the Replace Attribute (RPAT) operator. Five operators, 
i.e., Add Attribute (ADAT), Change Order (CHODR), Remove Attribute (RMAT), Replace Annotation (RPA), and Switch 
Target (SWTG), mimicked altogether a very low number of faults: 24 (12%).

13 https://github .com /actframework /actframework /issues /260 – accessed in February/2020.
14 https://github .com /akquinet /needle /commit /bcd709b4c4f9a74d3d5af31d024695721a2ab033 – accessed in February/2020.

https://github.com/actframework/actframework/issues/260
https://github.com/akquinet/needle/commit/bcd709b4c4f9a74d3d5af31d024695721a2ab033


16 P. Pinheiro et al. / Science of Computer Programming 191 (2020) 102418
Fig. 9. None of our operators could mimic this example (Java). In this scenario, we would need higher-order mutation operators to change two different 
code locations (i.e., ANY to NONE at the JsonAutoDetect annotation; and role to authority at the JsonProperty annotation). In this way, the 
mutant would have two different syntactical mutations at the code annotations.

Fig. 10. Misuse example from the Visual Studio 2017 SDK project (C#). Our operator Remove Annotation Attribute (RMAT) is able to mimic this fault.

Fig. 11. Wrong annotation parsing example from the ASP.NET MVC project (C#). Notice that there is one space character before the word in the first string 
and that there are no space characters in the second string. Our operator Replace Attribute Value (RPAV) is able to mimic this fault.

Regarding RQ4, our operators could not mimic 10 faults (five in Java and five in C#). To mimic them, we need higher-
order mutation operators [29,36], i.e., operators that change two or more code locations, such as removing two annotations 
or removing an annotation and changing an attribute to another. Fig. 9 illustrates an example from the spring-security
project.15 Notice that the developer changed annotation attributes of two different annotations (@JsonAutoDetect, at 
the class declaration; and @JsonProperty, at the constructor parameter).

Answer to RQ4: Ten faults need higher-order mutation operators. Thus, we could not mimic them by using our 
operators.

Fig. 10 illustrates a fault from the Visual Studio 2017 SDK project.16 The annotation [ProvideLanguageService]
informs Visual Studio that a VSPackage provides a language service, such as brace matching. In this example, the developer 
forgot to set RequestStockColors to true. As a result, RequestStockColors is set to false by default. This 
indicates that the language service will supply custom color-able items, which the developer did not have implemented nor 
intended to. We are able to mimic this fault by applying the Remove Annotation Attribute (RMAT) operator.

Fig. 11 illustrates a fault that our operator Replace Annotation Value (RPAV) is able to mimic. [AuthorizeAttribute]
is a code annotation from the ASP.NET MVC 5.2.17 It specifies that accesses to a controller or action method is restricted to 
users who meet the authorization requirement. In this example, the developer sets Role to the value “user, admin”. 
Notice that there is a space after the comma. The code responsible for parsing the [AuthorizeAttribute] annotation 
did not trim spaces originally, which in turn led to an error when authorizing users with the admin role.

15 https://github .com /spring -projects /spring -security /commit /c2d8ea92d0cd1f3a5b78c30d76dd6bc820b27e93 – accessed in February/2020.
16 https://docs .microsoft .com /en -us /dotnet /api /microsoft .visualstudio .shell .providelanguageserviceattribute ?view =visualstudiosdk-2017 – accessed in 

February/2020.
17 https://docs .microsoft .com /en -us /dotnet /api /system .web .mvc .authorizeattribute ?view =aspnet -mvc -5 .2 – accessed in February/2020.

https://github.com/spring-projects/spring-security/commit/c2d8ea92d0cd1f3a5b78c30d76dd6bc820b27e93
https://docs.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.shell.providelanguageserviceattribute?view=visualstudiosdk-2017
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.authorizeattribute?view=aspnet-mvc-5.2
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Fig. 12. Wrong annotation parsing example from the ASP.NET Versioning project (C#). Our operator Add Annotation (ADA) is able to mimic this fault.

Fig. 12 illustrates a fault that our operator Add Annotation (ADA) operator is able to mimic. [ODataRoute] is a code 
annotation from the OData v4 Web API.18 We can use it when implementing routing, i.e., defining a route that matches a URI 
to an action. In this example, the developer sets the key value parameter as id. If the service is changed to use the key 
value parameter name of id instead of key, the route continues to work using standard, unversioned OData routes, but 
not with routes that use OData API versioning. Our operator ADA is able to mimic this fault by applying [ApiVersion]
on such a context.

After presenting examples of faults in Java and C# that our operators are able to mimic, we now answer RQ5.

Answer to RQ5: The set of mutation operators we propose are representative in the sense we are able to mimic the 
majority of the faults in projects written in two languages, i.e., Java and C#. By mapping our operators to a new 
language (C#), we improved their generality.

4.3. Threats to validity

We now present the threats to the validity of our evaluation. We follow the convention presented by Wohlin et al. [51].
The set of projects we used represents a threat to external validity. To alleviate this threat, we selected projects with 

heavy use of Java and C# annotations. Like the projects, the faults we analyzed may not be representative. In this context, 
the projects are from different domains, sizes, and development periods, which minimizes this threat. Nevertheless, we 
acknowledge that a larger set of faults would better evaluate our operators and even lead to new operators since we were 
not exhaustive on this front.

The manual task to filter out the faults related to annotations represents a threat to conclusion validity. This manual 
analysis may lead to false positives, which may change our results and conclusions. To minimize this threat, two researchers 
analyzed all faults individually. In case they disagreed when analyzing one specific fault, we disregarded it from our dataset. 
Also, the manual analysis poses a threat to internal validity, i.e., when mapping the faults into each operator. Again, we 
minimize this threat because of the detailed analyses of the two researchers.

4.4. Implications for the practical application of our operators

• Improving test suites: previous research has reported that developers are overusing annotations [47], which might lead 
to problems of code understanding and maintainability. In such a case, the number of faults related to code annotations 
is likely to increase and more tests may have to be implemented to protect the software systems from these faults. 
In this scenario, our mutation operators might be important to induce developers to improve their test suites and, 
consequently, avoid annotation-related faults.

• Improving parsers of annotated code: our mutation operators are capable of simulating faults in code responsible for 
parsing annotated code. This way, when using our operators, developers might implement better parsers and improve 
the quality of their projects.

18 http://odata .github .io /WebApi /03 -03 -attrribute -routing/ – accessed in February/2020.

http://odata.github.io/WebApi/03-03-attrribute-routing/
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Listing 1. Example of configuration file loaded in our engine. This configuration file describes the @Entity target as "type", which includes class, interface, 
or enum declaration.

5. Mutation engine

Based on the proposed nine mutation operators, we designed a mutation engine for Java and C#. The engine imple-
ments all nine mutation operators we present and provides means (i.e., configuration files) to apply strategies to avoid the 
generation of useless mutants, as discussed in Section 3.

Six of our operators require additional context information to be applied, namely: ADA, ADAT, RPA, RPAT, RPAV, SWTG. 
For example, we can place certain annotations (e.g., @Entity) only at classes, interfaces, and enum declarations. Notice 
that this context information is important to avoid useless mutants. In other words, placing annotations like @Entity at 
field and method declarations does not make sense and can even cause the program to not compile.

To avoid these scenarios, our engine relies on JSON configuration files to guide the generation of the mutants. Listing 1
illustrates an example of such a file considering the ADA operator and the @Entity annotation. To define the places to 
which it is possible to add the @Entity annotation, developers should use the targets list. Notice that the list contains 
only one element, i.e., type. This guides our ADA operator to only place the @Entity annotation into classes, interfaces, 
and enum declarations. In addition, notice that we can define information regarding annotation attributes. For example, the
@Entity annotation may have a name attribute. The name type is string and the validValues represents potential 
valid values for the name attribute. This way, given the JSON configuration file presented in Listing 1 and the @Entity
annotation in the original program, the ADAT operator is able to create the following mutant: @Entity(name = "per-
son").

All operators that perform replacement tasks (i.e., RPA, RPAT, and RPAV) need additional context information. For exam-
ple, as mentioned in Section 3, replacing @NotNull by @Entity is meaningless and yields a useless mutant. The engine 
could replace @NotNull by @Nullable instead. To guide the engine to avoid meaningless replacements, we can use the
replaceableBy key of our JSON configuration file. For instance, Listing 2 shows that the RPA operator can replace @Con-
sumes by @Produces, and vice-versa. We can also configure the RPAT and RPAV operators. For example, @Consumes and
@Produces annotations have the value attribute. We can assign a list of strings to it. Listing 2 also shows examples 
of valid values for the value attribute. This way, given the annotation @Consumes(value = "image/jpeg") and 
using the RPAV operator, the engine is able to create the following mutant @Consumes(value = "image/png"), for 
instance. In this way, notice that depending on how the developer configures the JSON file, the engine is able to generate 
application-specific mutants.

After presenting two configuration files targeting the Java language, we now illustrate an example for C# (Listing 3). 
Notice that our JSON configuration file has the same structure regardless of the language (i.e., Java or C#). In this example, 
we are guiding the tool to add the [Required] annotation to C# fields. According to the official language documentation,19

this annotation “specifies that when a field on a form is validated, the field must contain a value.” In case the field is null or 
empty, an exception is raised and the message defined in the annotation attribute, i.e., ErrorMessage, is shown. To avoid 
meaningless mutants, developers should not declare (in the configuration file) “method” as a type, for example, since the 
tool would place the [Required] annotation at methods, which does not make sense.

To implement the SWTG operator, we need to know in advance to which targets we can move a certain annotation. We 
can define this in our JSON configuration file. For example, Listing 2 describes that the @Consumes valid targets are type
and method. This way, if the @Consumes annotation is placed at a method in the original program, the engine can move 
it to a class declaration and vice-versa.

Three operators do not need context information to be applied: RMA, RMAT, and CHODR. We implemented RMA and 
RMAT by simply removing the code annotation itself or part of it. When considering the CHODR operator, we only change 
the order by using permutations (i.e., n!, n = number of annotations). In summary, these three operators do not need any 
configuration to work properly.

19 https://docs .microsoft .com /en -us /dotnet /api /system .componentmodel .dataannotations .requiredattribute ?view =netframework-4 .8 – accessed in Febru-
ary/2020.

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.requiredattribute?view=netframework-4.8
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Listing 2. Example of configuration file loaded in our engine. This configuration file describes context information about the @Consumes and @Produces 
annotations.

Listing 3. Example of configuration file loaded in our engine. This configuration file describes the [Required] target as "field".

The engine is written in Kotlin.20 Kotlin is a general-purpose programming language, developed by JetBrains. Kotlin is 
statically typed, with type inference, and designed to interoperate fully with Java. Our engine is available online.21

As a last note regarding our mutation engine, we reinforce the fact that mutation of code annotations is a very recent 
topic; to date, we are aware of only one study that addressed it, performed by ourselves [44]. Consequently, little is known 
about representative types of mutants regarding code annotations, and only empirical studies will reveal the representa-
tiveness of the rules embedded in the configuration files. Our initial set of configuration files (some of them described 
in this section) is not intended to be comprehensive and definite, since annotations may come from standard APIs or be 
user defined. Due to this characteristic, our strategy of parameterizing (through external configuration files) the design of 
mutation operators gives the tool engineer (or even the tool user) the freedom to customize the definition of mutations 
for programs that employ specific types of annotations. In other words, the six operators (ADA, ADAT, RPA, RPAT, RPAV, 
SWTG) that require contextual information may be implemented with fine-tuned configuration files based on contextual 
information.

20 http://kotlinlang .org/ – accessed in February/2020.
21 https://github .com /easy-software -ufal /mutation -tool -for-annotations – accessed in February/2020.

http://kotlinlang.org/
https://github.com/easy-software-ufal/mutation-tool-for-annotations
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6. Related work

While mutation testing was heavily studied in the context of imperative languages [49], recent research also followed 
the trend of dealing with different paradigms, frameworks, and other language constructs. For example, Hajjaji et al. [3]
proposed a set of mutation operators for configurable systems in C programs. The operators can add, remove, and change
#ifdefs and even elements related to the variability model. In this context, they identified that traditional C mutation 
operators were not able to mimic variability faults. Estero-Botaro et al. [24] designed a set of mutation operators for the 
WS-BPEL 2.0 (Web Services Business Process Execution Language). Ferrari et al. [26] proposed a suitable set of mutation 
operators for AspectJ-based programs. Deng et al. [20] defined mutation operators specific to the characteristics of Android 
apps, such as the event handler and the activity lifecycle. Previous work also proposed other Java-specific mutation operation 
sets related to object-oriented programming [34] and concurrency mechanisms [9,17].

Regarding C#, Derezińska [21] proposed a set of mutation operators that targets specific features of the language, ex-
tending a previous work by Baudry et al. [7]. These operators can, for example, change a delegated method, delete member 
variable initialization, and even remove exception handling. In this context, Derezińska identified that some mutation oper-
ators are not appropriate for C# programs and that some operators require specific pre- and post-conditions to be applied 
effectively, taking into account not only local but also structural information of the program [22]. With that in mind, our 
mutation operators for code annotations also require specific pre- and post-conditions to be applied effectively.

Addressing the faults raised by code annotations has been tackled before. Sanchez et al. [14] observed that the Java native 
support to construct annotations is very poor, thus limiting the ability to specify the elements where an annotation can be 
placed and further correctness conditions. This way, they describe Ann, a modeling language for the design and validation 
of Java annotations. Ann makes use of a constraint solver over models to detect whether the constraints posed by a set 
of annotations are unsatisfiable. Another piece of work describes a new tool (named AnnaBot) to make assertions about 
how annotations are used [16]. AnnaBot introduces a Domain-Specific Language for declarative specification of additional 
checking in Java annotations. It works by reading this specification and verifying the compliance of the annotated file with 
respect to the specification. These tools extend the static checking for code annotations, but cannot prevent failures caused 
by dynamic behavior. For example, they do not deal with issues caused by wrong annotation parsing (such as the fault 
presented in Fig. 8).

Another initiative to statically check code annotations follows the idea that annotations should describe the way in 
which they should be validated [38]. The approach is based on meta-annotations (@Validators) for the validation of 
annotations in Java applications. These meta-annotations describe the rules of use of domain level annotations. Differently, 
from our mutation testing operators, these meta-annotations cannot support developers in testing the dynamic behavior of 
parsing annotated code.

Araújo et al. [6] proposed an approach to identify mutation operators that mimic faults that an automatic static analyzer 
is not capable of detecting. In this way, to better evaluate our operators, we can perform a study also based on static 
analyzers to better understand and prioritize our operators.

7. Concluding remarks and future work

Many projects nowadays make use of meta-programming through code annotations. In a previous work, we presented 
the first set of mutation operators for code annotations [44]. We proposed nine mutation operators and evaluated whether 
they can mimic realistic faults. We extended this prior work in several ways. First, we mapped our mutation operators 
to a different programming language (i.e., C#), improving the generality of our operators. Second, our enlarged evaluation 
using 200 issues of open-source projects (100 in Java and 100 in C#) improves confidence on the ability of our operators 
to mimic code annotation-related faults. To better structure our evaluation, we extended and improved our code-annotation 
issue repository. Each issue of the repository is labeled with information like the type of the error that the developer 
committed and the mutation operator able to mimic the fault. The repository now contains 200 code annotation faults and 
may support not only further mutation testing research, but also general software engineering studies on code annotations.

The results of our evaluation showed that our operators are able to mimic 190 out of 200 issues (i.e., 95%). Curiously, 
we achieved the same ratio for both the Java and C# languages. We also found that three (out of nine) operators were 
responsible for simulating 83% of all faults: Add Annotation (ADA), Remove Annotation (RMA), and Replace Annotation 
Value (RPAV). In addition, one operator was not able to mimic any fault, i.e., Replace Attribute (RPAT). We also identified 
faults that need more complex code transformations to be mimicked. In this case, we could use the idea of high-order 
mutation [29,36]. We also discuss scenarios to avoid meaningless mutants. For example, the Replace Annotation (RPA) 
operator should select a meaningful annotation to replace the actual one (e.g., @NotNull by Nullable).

Moreover, this article introduced a mutation engine for code annotations. The engine is available for download and 
automates the application of the nine operators to Java and C# programs. Developers can configure the engine to avoid 
meaningless mutants (such as replacing @NotNull by Entity) by using the engine configuration files.

As future work, we intend to further study whether specific frameworks (e.g., Hibernate) need specific operators. Addi-
tionally, we intend to provide a broader analysis regarding the applicability of our operators to other languages that also 
support code annotations such as Python, C++, Ruby, and Haskell. In addition, we intend to evaluate the quality of the mu-
tants generated by our operators. In particular, after applying our mutation engine, we will check the number of equivalent 
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and duplicated mutants [19,41] and even assess the number of redundant mutants [4]. Moreover, we intend to evaluate the 
correlation of our mutants with real faults related to code annotations, similarly to what has been done in previous studies 
with similar intent [5,15,33]. We also intend to provide rules in terms of a JSON-like scheme to validate the configuration 
files and warn developers with respect to potential wrong configurations, which would lead to meaningless mutants. Last 
but not least, we intend to perform an extensive empirical study focusing on scenarios such as the ones we presented in 
Section 3.2, i.e., we will create code annotation mutants and execute the tests to check to what extent these mutants help 
with improving the test suites.
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[43] G. Petrović, M. Ivanković, B. Kurtz, P. Ammann, R. Just, An industrial application of mutation testing: lessons, challenges, and research directions, in: 
Proceedings of the 13th International Workshop on Mutation Analysis (Mutation), Västerås, Sweden, IEEE, 2018, pp. 47–53.

[44] P. Pinheiro, J.C. Viana, L. Fernandes, M. Ribeiro, F.C. Ferrari, B. Fonseca, R. Gheyi, Mutation operators for code annotations, in: Proceedings of the 3rd 
Brazilian Symposium on Systematic and Automated Software Testing (SAST), São Carlos, SP Brazil, ACM Press, 2018, pp. 77–86.

[45] Piotr Trzpil, VisualMutator - NET mutation testing, https://visualmutator.github .io /web/, 2019. (Accessed November 2019).
[46] A.V. Pizzoleto, F.C. Ferrari, A.J. Offutt, L. Fernandes, M. Ribeiro, A systematic literature review of techniques and metrics to reduce the cost of mutation 

testing, J. Syst. Softw. 157 (2019).
[47] H. Rocha, M.T. Valente, How annotations are used in Java: an empirical study, in: Proceedings of the 23rd International Conference on Software 

Engineering and Knowledge Engineering (SEKE), Knowledge Systems Institute Graduate School, Miami Beach, FL, USA, 2011, pp. 426–431.
[48] D. Schuler, A. Zeller, Covering and uncovering equivalent mutants, Softw. Test. Verif. Reliab. 23 (5) (2013) 353–374.
[49] A. Sullivan, K. Wang, R.N. Zaeem, S. Khurshid, Automated test generation and mutation testing for Alloy, in: Proceedings of the International Conference 

on Software Testing, Verification and Validation (ICST), Tokyo, Japan, IEEE, 2017, pp. 264–275.
[50] P. Tahchiev, F. Leme, V. Massol, G. Gregory, JUnit in Action, 2nd edition, Manning Publications Co., Shelter Island, NY, USA, 2010.
[51] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, A. Wesslén, Experimentation in Software Engineering: An Introduction, Kluwer Academic 

Publishers, 2000.

http://refhub.elsevier.com/S0167-6423(20)30029-0/bib24E90D5827E653F288A8ECC228C5F5E0s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib24E90D5827E653F288A8ECC228C5F5E0s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib7F61F86BBE657656897B8B4813DD57F0s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib667548741681DA69DEE4A9D7342E9B9As1
http://nunit.org/
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib7F4F0D42DCEF942587636C4318864AA2s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib7F4F0D42DCEF942587636C4318864AA2s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bibFCAFBB0E57A98B1F580FA66D1B3C0782s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bibFCAFBB0E57A98B1F580FA66D1B3C0782s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bibFCAFBB0E57A98B1F580FA66D1B3C0782s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib982D6154942E72AA205C694E5482C7E7s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib982D6154942E72AA205C694E5482C7E7s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib28BC5F89B0636F34DECCA007F05C24F6s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib28BC5F89B0636F34DECCA007F05C24F6s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib45A4C44CFEEC2918F17BCE77C57D90D7s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib45A4C44CFEEC2918F17BCE77C57D90D7s1
https://visualmutator.github.io/web/
http://refhub.elsevier.com/S0167-6423(20)30029-0/bibCA0AADECB41CD4BAD117C93B90490DCFs1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bibCA0AADECB41CD4BAD117C93B90490DCFs1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bibBA50A23CEB6ECAA5B6E113935733B0DCs1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bibBA50A23CEB6ECAA5B6E113935733B0DCs1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib34E4F8AB8959F76257E2E963098F0EEBs1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib6DC841F7240044F26057CD301CB6B041s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib6DC841F7240044F26057CD301CB6B041s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib0013238183DB8DC9BBC83F3A81E6ED46s1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib21BD1A0A3489A5234F12B8105561B2BFs1
http://refhub.elsevier.com/S0167-6423(20)30029-0/bib21BD1A0A3489A5234F12B8105561B2BFs1

	Mutating code annotations: An empirical evaluation on Java and C# programs
	1 Introduction
	2 Background
	2.1 Code annotations
	2.2 Motivating example

	3 Mutation operators for code annotations
	3.1 Mutation operators
	3.2 Usefulness of annotation-based mutation operators

	4 Evaluation
	4.1 Settings
	4.2 Results and discussion
	4.2.1 Repository of code annotation-related faults
	4.2.2 Answering the research questions

	4.3 Threats to validity
	4.4 Implications for the practical application of our operators

	5 Mutation engine
	6 Related work
	7 Concluding remarks and future work
	References


