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Dear Günther Ruhe, 
 
We are grateful for the valuable feedback and comments on the earlier version of our article 
(INFSOF-D-20-00199), and we revised it accordingly. Please find below our responses to the 
individual issues that reviewers raised. We also include our article highlighting the changes we 
made. 
  
____________________________________ 
Rohit Gheyi 
Department of Computing and Systems  
Federal University of Campina Grande 
882, Aprígio Veloso, Bodocongó 
Campina Grande, PB, 58429-900, Brazil 
phone: +55 83 2101-1122, extension 2202  
e-mail: rohit@dsc.ufcg.edu.br  
  
Reviewer comments 
Our answers 
 
Reviewer #1:  
 
Next we define the kills relation in Definition 1. -> We now define the kills relation 
Fixed (see Section 2). 
 
The scope of quantification over m1, m2 is odd in Definition 2: "Consider a program p and two 
distinct mutations, M1 and M2, that are applied on the same mutation target. For all targets tgt 
in p and all mutants m1 and m2 generated from M1 and M2, respectively, on tgt, we say that 
M2 subsumes M1 iff: ...." 
The intent seems to be that the definition is about "M2 subsumes M1". Then the auxiliary 
entities, m1, m2, tgt are used to define this concept, they are not part of what is defined. So on 
the left side of the definition you would have "M2 subsumes M1", on the right side, all the 
auxiliary entities: 
"Consider a program p and two distinct mutations, M1 and M2, that are applied on the same 
mutation target. We say that M2 subsumes M1 iff  for all targets tgt in p and all mutants m1 
and m2 generated from M1 and M2, respectively, on tgt: ...." 
Fixed (see Section 2). 
 
I found this snippet needlessly complicated: 
def keepNonRedundantMutants(muts): 
  redundant = set () 
  for i in range (len(muts)) : 
    for j in range (len(muts)) : 
      if i != j and redundantMutants (muts[i], muts[j]) : 
        if muts [i] not in redundant and muts [j] not in redundant : 
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          redundant.add(muts [j]) 
  return [m for m in muts if m not in redundant ] 
It would be equivalent to: 
def keepNonRedundantMutants(muts): 
  non_redundant = [] 
  for m1 in muts: 
    if not any(redundantMutants(m1, m2) for m2 in non_redundat): 
      non_redundant.append(m1) 
  return non_redundant 
We updated Listing 7. 
 
Reviewer #3:  
 
I am still unclear about the main issue with subsumption: what is its relation to semantic 
equivalence? again, the most natural way to minimize redundancy is to select a single 
representative from each equivalence class (modulo semantic equivalence) of the set of 
mutants. the authors say that removing subsumed mutants is the same thing as selecting a rep 
from each equivalence class, but that is patently false, if only for the following reasons: first 
equivalence is an equivalence relation whereas subsumption is an ordering relation; second, 
equivalence is an intrinsic property of the mutants whereas subsumption involves the two 
mutants and a mutation target. At the very least, I would change the second condition of 
definition to a \subseteq relation rather than a \subset relation, and analyze the relation between 
semantic equivalence and mutual subsumption. I believe the latter logically implies the former, 
which means subsumption gives a superset of the set of mutants provided by equivalence. 
We followed your suggestion and changed the general definition to a \subseteq relation rather 
than a \subset relation. We changed Definition 2, Listing 4, the last paragraph of Section 2, and 
the fourth paragraph of Section 4.1. This modification does not impact on our results presented 
in Table 1. The only expected change is that now some subsumption relation graphs may have 
bidirectional arrows between two distinct m1 and m2 nodes when kills(p,m1)=kills(p,m2). 
 
also the authors did not answer my question whether minimal means minimal for inclusion or 
having a minimal cardinality (I believe it is the former, hence you may end up with a larger set 
than needed). 
It is having a minimal cardinality. Consider we have three mutations m1, m2, and m3, such that:  

● kills(p,m1) ≠ ∅; 
● kills(p,m1) ⊂ kills(p,m3); 

● kills(p,m1) = kills(p,m2). 
Developers can use the following minimal sets: {m1} or {m2}. We include a clarification in the 
end of the second paragraph of Section 4. 
 
Definition 1 is incomplete because it fails to specify what happens when one of the programs 
or both programs fail to terminate. 
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We updated Definition 1 to state that we assume p and m always terminate when running any 
test case. 
 
also I asked whether subsumption is binary or higher order because it is conceivable that, e.g. 
M1 does not subsume M2, M3 does not subsume M2, but the combination of M1 and M3 
subsume M2. in which case you want to include M1 and M3 and exclude M2. is that possible? 
are you making provisions? do they all have to have the same mutation target? 
We encoded some higher order mutations proposed in the literature for the same mutation target 
in our theory (see Listing 8). In our preliminary results, we do not have examples that fit this 
scenario: 

● M1 does not subsume M2, M3 does not subsume M2, but the combination of M1 and 
M3 subsume M2. 

As future work, we intend to investigate more about higher order mutants and see whether this 
scenario occurs.  
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Abstract

Context: Mutation analysis is a popular but costly approach to assess the qual-

ity of test suites. One recent promising direction in reducing costs of mutation

analysis is to identify redundant mutations, i.e., mutations that are subsumed by

some other mutations. A previous approach found redundant mutants manually

through truth tables but it cannot be applied to all mutations. Another work

derives them using automatic test suite generators but it is a time consuming

task to generate mutants and tests, and to execute tests.

Objective: This article proposes an approach to discover redundant mutants

by proving subsumption relations among method-level mutation operators using

weak mutation testing.

Method: We conceive and encode a theory of subsumption relations in the Z3

theorem prover for 37 mutation targets (mutations of an expression or state-

ment).

Results: We automatically identify and prove a number of subsumption rela-
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tions using Z3, and reduce the number of mutations in a number of mutation

targets. To evaluate our approach, we modified MuJava to include the results

of 24 mutation targets and evaluate our approach in 125 classes of 5 large open

source popular projects used in prior work. Our approach correctly discards mu-

tations in 75.93% of the cases, and reduces the number of mutations by 71.38%.

Conclusions: Our approach offers a good balance between the effort required

to derive subsumption relations and the effectiveness for the targets considered

in our evaluation in the context of strong mutation testing.

Keywords: Mutation Analysis, Redundant Mutants, Theorem Proving

1. Introduction

Mutation analysis is a popular technique to assess quality of test suites [6, 40,

46]. The technique introduces variations in code and checks if those variations

are observable through test execution. Applying a mutation to a program yields

a mutant. A mutant is said to be killed if a test case in the test suite fails on

a given mutant; a mutant is said to survive otherwise. The intuition is that a

test suite that kills more mutants is more adequate to detect defects when they

actually occur [20].

Usually, the costs of using mutation analysis are high, mainly due to the

high number of generated mutants and the high computing time to execute the

test suite against each mutant. However, some mutants are redundant, that is,

they may not be necessary for the effectiveness of mutation analysis and thus we

may discard them [45]. We can speed up execution time using multi-execution,

parallel execution, and so on. But reducing cost is still important. Redundant

mutants do not contribute to the test assessment process because they are killed

when other mutants are also killed [26, 45]. Redundant mutants are always

subsumed by other mutants. The generation of these mutants increases the

total cost and does not help to improve effectiveness of the test suite. Ammann

et al. [1] empirically identified that a number of the generated mutants are

redundant. Also, Papadakis et al. [47] identified that such redundant mutants
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inflate the mutation score and that a number of recent research papers are

vulnerable to threats to validity due to the effect of these mutants.

To identify redundant mutants, we can take subsumption relations into ac-

count. Kaminski et al. [24] manually constructed subsumption hierarchies with

the support of truth tables produced by the outcomes of mutants associated

with the Relational Operator Replacement (ROR) mutation operator. This op-

erator generates seven different mutations, but Kaminski et al. [24] identified

that only three mutations are sufficient to cover all input domains, yielding a

reduction of 57% of redundant mutants. Just et al. [21] expanded this idea

with two more mutation operators. Both works use truth tables to infer logical

relationships across the operations. Although the idea is promising, we can-

not apply it for non-logical operators. For instance, a binary expression with

two numeric variables a + b has a very large set of input possibilities, which

turns the manual and logical approach more difficult. Guimarães et al. [11] pro-

posed an approach to yield dynamic subsumption relations among method-level

mutants by using automatic test suite generators, such as Randoop [44] and

EvoSuite [7] in the context of strong mutation testing. However, the approach

is time consuming since it needs to generate mutants, compile them, generate

test suites, and execute them.

In this article, we propose an approach consisting of six steps to discover

subsumption relations among method-level mutations using theorem proving in

the context of weak mutation testing [13]. We encode a theory of subsump-

tion relations in Z3 and use its theorem prover [36] to automatically identify

redundant mutations (Section 4). We consider most of the method-level muta-

tion operators available in the MuJava tool [32, 33]. We reduce the number

of mutations in a number of mutation targets (mutations of an expression or

statement). A mutation target is a language expression or statement in which

it is possible to apply a set of mutations of one or more mutation operators [11].

To evaluate our approach, we modify MuJava to include the results of 24

mutation targets and evaluate our approach in 125 classes of 5 real projects.

Our approach achieves an effectiveness (the percentage of mutants correctly
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discarded by our technique) of 75.93% and a reduction rate (the percentage of

mutants discarded by our technique) of 71.38%. We achieve a good cost-benefit

ratio between the effort required to derive the mutation subsumption relations

and the effectiveness for the targets considered in our evaluation in the context of

strong mutation testing. Moreover, we show that the random sampling strategy

requires a sampling rate greater than 60% to achieve a similar effectiveness of

our approach. So, our reduction mutation strategy is not considered harmful.

We organize this article as follows. We explain mutant subsumption relations

in Section 2, and present a motivating example in Section 3. Section 4 describes

our approach to identify subsumption relations using Z3. Section 5 presents the

evaluation of our approach. Finally, we relate our approach to others (Section 6),

and present concluding remarks (Section 7).

2. Mutation Subsumption Relations

Mutation analysis uses mutation operators to introduce faults in the program

to create mutants deliberately [6]. In this context, there is a wide variety of

mutation operators. Each mutation operator can implement a set of mutations.

In this work, we follow the same definition for “mutation” of previous work [23]:

a mutation refers to a syntactic change (e.g., a && b 7→ a || b).

Subsumption relations identify redundancy in sets of mutations and hence

can be used to optimize approaches to both mutant and test generation [27]. The

subsumed mutants do not need to be generated, and test generation methods

can target subsuming mutants.

We now define the kills relation.

Definition 1. Consider a program p. We apply a mutation M to p and yield

one or more mutants. Let m be one of them. Both p and m always terminate

when running any test case. We define the kills(p,m) function that yields all

test cases that have different return values in p and m.

For example, consider the p = x+y program. Suppose we apply a mutation M

converting the arithmetic operator + to the arithmetic operator -. We yield the
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m = x-y mutant. In this example, kills(p,m) yields a non empty set of test

cases. A test case assigns values to all variables in p. It contains the following

test case t=(x=1,y=1) that yields different values in p (2) and m (0).

We define the subsumption relation in Definition 2.

Definition 2. Consider a program p and two distinct mutations, M1 and M2,

that are applied on the same mutation target. We say that M2 subsumes M1 iff

for all targets tgt in p and all mutants m1 and m2 generated from M1 and M2,

respectively, on tgt:

1. kills(p,m2) 6= ∅

2. kills(p,m2) ⊆ kills(p,m1)

The first condition of Definition 2 guarantees that m2 is not an equivalent

mutant [34]. The program and the mutant have at least one test case that

yields different values. In the second condition of Definition 2, the set of test

cases that kills m2 is a subset of the set of test cases that kill m1. Notice that

we can have more test cases that kill m1 but cannot kill m2. In this way, it is

easier to kill m1 than m2. So, we say that m2 subsumes m1. We do not need to

generate m1 during mutation testing. Studying mutation subsumption relation

can help us build more efficient mutation testing tools, significantly improving

the applicability of mutation testing in industry by helping to minimize one of

the challenges [49].

3. Motivating Example

Consider a binary expression with a relational operator lexp <op> rexp,

where lexp and rexp indicate expressions or literals and <op> is a relational

operator (==, !=, >, >=, <, or <=). The Relational Operator Replacement (ROR)

mutation operator performs seven mutations, replacing the original operator

<op> with each of the other five relational operators and replacing the entire

expression with true and false. Thus, for the binary expression a > b, the

ROR operator performs the following seven mutations [11]:
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1. a > b 7→ a == b;

2. a > b 7→ a != b;

3. a > b 7→ a >= b;

4. a > b 7→ a < b;

5. a > b 7→ a <= b;

6. a > b 7→ true;

7. a > b 7→ false.

However, some mutations may not be necessary for the effectiveness of mu-

tation analysis and are actually useless. An equivalent mutant is syntactically

different from the original program but has the same semantics [34]. In this

work, we focus on redundant mutants. To identify them, we rely on subsump-

tion relations, as defined in Section 2.

For instance, consider the binary expression a > b and two mutants: a >=

b and a <= b. Notice that both mutants are not equivalent to the original

binary expression using weak mutation testing. If a is different from b in a test

case, we kill a <= b but we cannot kill a >= b. If a is equal to b in a test case,

we kill both mutants. Since (i) all test cases that kill a >= b also kill a <= b,

and (ii) there are some test cases that kill a <= b but cannot kill a >= b, we

conclude that ROR (>=) subsumes ROR (<=) for the mutation target a > b.

As a consequence, we must not apply ROR (<=) in this mutation target if we

apply ROR (>=) using weak mutation testing, hence reducing the number of

redundant mutants.

Previous works manually found redundant mutants through the truth ta-

ble [24, 21]. Although the idea is promising, it can only be applied for logical

and relational operators. Guimarães et al. [11] used automatic test generation

to identify subsumption relations using strong mutation testing. However, we

cannot have full confidence in the results derived using automatic test suite

generators for some types of variables, such as integer numbers. Moreover, it

is a time consuming approach to derive the subsumption relations using auto-

matic test suite generators. In this work, we focus on proposing an approach
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to automatically derive sound method-level mutation subsumption relations in

a theorem prover using weak mutation testing.

4. Encoding and Proving Subsumption Relations

In this section, we propose a technique to prove subsumption relations using

weak mutation testing. We focus on code fragments. We use the Z3 [36] API for

Python, which has a theorem prover. We consider most MuJava method-level

mutation operators [33], such as operators that mutate arithmetic, relational,

and logical expressions, and variable assignment statements. We do not focus

on the object-oriented ones, i.e., the class-level mutation operators.
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Table 1: It presents the mutation targets, method-level mutations that each operator is able

to create in the corresponding target, a minimal set of mutations for each target identified in

our approach, and the size of a minimal set of mutations compared to the original one. OP1:

select CDL, ODL, or VDL. We use the following variables. exp: unary expression, such as

identifiers, variables, literals; lexp and rexp: unary expressions, or binary expression; lhs:

identifiers, or variables used in statements; rhs: unary expressions, or binary expression used

in statements.
Mutation Target Mutation Operators Minimal Set of Mutations Size

lexp + rexp (for Z+) AORB (2), VDL (2), CDL (2), ODL (2) AORB(*) 12.5%

lexp + rexp (for Z) AORB (2), VDL (2), CDL (2), ODL (2) All 100%

lexp - rexp (for Z+) AORB (2), VDL (2), CDL (2), ODL (2) OP1(lexp) 12.5%

lexp - rexp (for Z) AORB (2), VDL (2), CDL (2), ODL (2) All 100%

lexp * rexp (for Z+) AORB (2), VDL (2), CDL (2), ODL (2) AORB(+), OP1(lexp), OP1(rexp) 87.5%

lexp * rexp (for Z) AORB (2), VDL (2), CDL (2), ODL (2) All 100%

lexp ^ rexp (bool) COR (4), ROR(2), COI (3), VDL (2), CDL (2), ODL (2) COR(False), COR(||) 13.3%

lexp && rexp COR (4), ROR(2), COI (3), VDL (2), CDL (2), ODL (2) OP1(lexp), OP1(rexp), ROR(==), COR(False) 26.7%

lexp || rexp COR (4), ROR(2), COI (3), VDL (2), CDL (2), ODL (2) OP1(lexp), OP1(rexp), ROR(!=), COR(True) 26.7%

lexp == rexp (bool) ROR (1), COI (3), VDL (2), CDL (2), ODL (2) OP1(lexp), OP1(rexp) 20%

lexp != rexp (bool) ROR (1), COI (3), VDL (2), CDL (2), ODL (2) OP1(lexp), OP1(rexp) 20%

lexp == rexp ROR (7), COI (1) ROR(False), ROR(>=), ROR(<=) 37.5%

lexp != rexp ROR (7), COI (1) ROR(<), ROR(True), ROR(>) 37.5%

lexp > rexp ROR (7), COI (1) ROR(False), ROR(!=), ROR(>=) 37.5%

lexp >= rexp ROR (7), COI (1) ROR(True), ROR(==), ROR(>) 37.5%

lexp < rexp ROR (7), COI (1) ROR(False), ROR(!=), ROR(<=) 37.5%

lexp <= rexp ROR (7), COI (1) ROR(True), ROR(==), ROR(<) 37.5%

lexp != rexp (obj) ROR (7), COI (1) ROR(True), ROR(>), ROR(<) 37.5%

lexp & rexp LOR (2), VDL (2), CDL (2), ODL (2) OP1(lexp), OP1(rexp) 25%

lexp | rexp LOR (2), VDL (2), CDL (2), ODL (2) OP1(lexp), OP1(rexp), LOR( ˆ ) 37.5%

lexp ^ rexp LOR (2), SOR (2), CDL (2), ODL (2) LOR(|) 12.5%

lexp >> rexp LOR (3), SOR (1), VDL (2), CDL (2), ODL (2) OP1(lexp), OP1(rexp), LOR( ˆ ), LOR(|), LOR(&), SOR(<<) 60%

lexp << rexp LOR (3), SOR (1), VDL (2), CDL (2), ODL (2) LOR( ˆ ), LOR(&), SOR(>>) 30%

exp AOIS (4), AOIU (1), LOI (1) AOIU(-exp) 16.7%

+exp AODU (1), LOI (1), ODL (1) LOI(˜exp) 33.3%

-exp AODU (1), LOI (1), ODL (1) AODU(exp) 33.3%

++exp AORS (1), AODS (1), LOI (1), ODL (1) AODS(exp), LOI(~exp) 50%

exp++ AORS (1), AODS (1), LOI (1), ODL (1) LOI(˜exp) 25%

--exp AORS (1), AODS (1), LOI (1), ODL (1) AODS(exp), LOI(~exp) 50%

exp-- AORS (1), AODS (1), LOI (1), ODL (1) LOI(~exp) 25%

!exp COD (1), ODL (1) COD(exp) 50%

~exp AODU (1), LOD (1), ODL (1) LOD(exp) 33.3%

lhs += rhs (for Z+) ASRS (2), ODL (1), SDL (1) ASRS(*=) 25%

lhs -= rhs (for Z+) ASRS (2), ODL (1), SDL (1) ODL(lhs=rhs) 25%

lhs *= rhs (for Z+) ASRS (2), ODL (1), SDL (1) ODL(lhs=rhs), ASRS(+=), SDL 75%

lhs <<= rhs ASRS (1), ODL (1), SDL (1) ASRS(>>=) 33.3%

lhs >>= rhs ASRS (1), ODL (1), SDL (1) All 100%

lhs &= rhs ASRS (2), ODL (1), SDL (1) ODL(lhs=rhs), SDL 50%

lhs |= rhs ASRS (2), ODL (1), SDL (1) ODL(lhs=rhs), ASRS(ˆ=), SDL 75%

lhs ^= rhs ASRS (2), ODL (1), SDL (1) ASRS(|=) 33.3%

Table 1 illustrates a number of method-level mutation targets (code frag-

ments) in which MuJava is able to apply a set of mutations from one or more

mutation operators. Consider the first column of the table. The first row of
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the table focuses on the mutation target lexp + rexp (for Z+), where lexp

and rexp are positive integer expressions. In the second row of Table 1, lexp

and rexp are integer expressions. For other mutation targets, we also consider

boolean expressions or objects in other targets. In the second column of the

table, we present the mutation operators that can be applied to each mutation

target. We can apply four mutation operators in MuJava to the mutation target

presented in the first row of the table: AORB, VDL, CDL, and ODL. Table 2

describes the mutation operators considered in our work [31]. The mutation

operators can generate eight mutants, two for each operation. We provide the

number of possible mutations (in parentheses) that such operator can apply into

the target. So, we have in the second column of Table 1: AORB (2), VDL (2),

CDL (2), ODL (2). By using our technique explained in Section 4.2, we yield

a minimal set of mutations presented in the third column of Table 1. For the

mutation target lexp + rexp (for Z+), we only have one mutation: AORB

using the operator *. The other seven mutants presented in the second column

of Table 1 are redundant or equivalent. Since the redundant mutants do not

contribute to the test assessment process because they are killed when other

mutants are also killed [26, 45], our technique detects and removes them. So,

we define a minimal set of mutations. We may have more than one minimal

sets, but all of them have the same set cardinality. A developer can select any

of them. Finally, the last column of Table 1 indicates the size of a minimal

set of mutations compared to the original one. Since our minimal set for this

mutation target contains one out of eight mutations, the size is 12.5%.
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Table 2: Description of mutation operators.

Operator Description

AORB Binary Arithmetic Operator Replacement

AORS Short-Cut Arithmetic Operator Replacement

AOIU Unary Arithmetic Operator Insertion

AOIS Short-Cut Arithmetic Operator Insertion

AODU Unary Arithmetic Operator Deletion

AODS Short-Cut Arithmetic Operator Deletion

ROR Relational Operator Replacement

COR Conditional Operator Replacement

COI Conditional Operator Insertion

COD Conditional Operator Deletion

SOR Shift Operator Replacement

LOR Logical Operator Replacement

LOI Logical Operator Insertion

LOD Logical Operator Delete

ASRS Short-Cut Assignment Operator Replacement

SDL Statement DeLetion

VDL Variable DeLetion

CDL Constant DeLetion

ODL Operator DeLetion

This section is organized as follows. Section 4.1 presents some auxiliary func-

tions. Section 4.2 defines the main steps of our technique. Section 4.3 encodes

our technique in Z3. Finally, we present our lessons learned in Section 4.4.

4.1. Auxiliary Functions

Listing 1 specifies how to prove a theorem using the Z3 Python API. It can

yield three answers: the theorem is valid, invalid, or it does not know the answer.

The command Solver creates a general purpose solver in Z3 [36]. Constraints

can be added using the add function. The Solver.check method solves the

constraints. The result is sat (satisfiable) if a solution was found. The result is

unsat (unsatisfiable) if no solution exists. Finally, a solver may fail to solve a

system of constraints and unknown is returned.
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Listing 1: Proving a theorem in Z3.

def prove ( theorem ) :

s = So lve r ( )

s . add ( Not ( theorem ) )

r = s . check ( )

i f r == unsat :

return 1 # theorem i s v a l i d

e l i f r == unknown :

return 2 # Z3 doesn ’ t know the answer

else :

return 0 # theorem i s i n v a l i d

Listing 2 presents two functions checking whether con-

straints are satisfiable (isSat) or unsatisfiable (isUnsat).

Listing 2: Checking constraints in Z3.

def check ( f ) :

s = So lve r ( )

s . add ( f )

r = s . check ( )

i f r == unknown :

print ( ‘ ‘ unexpected unknown r e s u l t for ’ ’ , f )

return r

def i s S a t ( f ) :

return check ( f ) == sat

def i sUnsat ( f ) :

return check ( f ) == unsat

Before specifying the subsumption relation, we encode the kills function

in Listing 3. It defines a formula stating that p and m have different values.
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Listing 3: The function kills.

def k i l l s (p , m) :

return p != m

The subsumption function presented in Listing 4 checks whether a mutation

subsumes another one, when considering the input program p. We may add some

conditions (conds) when checking a theorem, such as restricting that all integer

numbers are positive. The first part of Definition 2 states that kills(p,m2) 6= ∅.

To encode it in Z3, we define the isNonEmpty function, which tries to find a test

case for kills(p, m). To check the second condition presented in Section 2, we

define the isSubset function, which checks whether there is no test case that

is valid for kills(p, m2) but it is not valid for kills(p, m1).

Listing 4: Defining a theorem in Z3.

def isNonEmpty (p , cond , m) :

return i s S a t (And( cond , k i l l s (p , m) ) )

def i s Subs e t (p , cond , m1, m2) :

return i sUnsat (And( cond , k i l l s (p , m2) , Not ( k i l l s (p , m1) ) ) )

def subsumption (p ,m1,m2, conds ) :

t1 = isNonEmpty (p , conds , m2)

t2 = i sSubs e t (p , conds , m1, m2)

i f t1 == 1 and t2 == 1 :

return (m2,m1) # m2 subsumes m1

else :

return None

To make it easier to compare all mutations, we define the

identifySubsumptions function (see Listing 5) that compares all possi-

ble combinations to identify whether a mutation subsumes another one. muts

represents a list of mutants.
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Listing 5: Identifying all subsumption relations in Z3.

def ident i fySubsumpt ions (p , muts , conds ) :

r e s u l t = [ ]

for i in range ( len ( muts ) ) :

for j in range ( len ( muts ) ) :

i f i != j :

s = subsumption (p , muts [ i ] , muts [ j ] , conds )

i f ( s i s not None ) :

r e s u l t . append ( s )

return r e s u l t

Moreover, we also declare the keepNonEquivalentMutants function that

keeps only non-equivalent mutants (see Listing 6). In this way, we discard

equivalent mutants from our analysis, hence satisfying the first condition of

Definition 2.

Listing 6: Identifying equivalent mutants in Z3.

def keepNonEquivalentMutants (p , muts ) :

return [m for m in muts i f prove (p==m) !=1 ]

Finally, we define the keepNonRedundantMutants function that keeps only

non redundant mutants (see Listing 7). A mutant is duplicated to another

mutant when both of them have the same semantics. In this way, we discard

redundant mutants.
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Listing 7: Detecting redundant mutants in Z3.

def redundantMutants (m1,m2) :

i f prove (m1==m2) == 1 :

return True

else :

return False

def keepNonRedundantMutants ( muts ) :

non redundant = [ ]

for m1 in muts :

i f not any( redundantMutants (m1, m2) for m2 in non redundant ) :

non redundant . append (m1)

return non redundant

4.2. Steps

For each mutation target, the main steps of our approach are the following:

1. Declare variables and conditions;

2. Specify a program;

3. Specify a list of mutants;

4. Identify and remove equivalent mutants;

5. Identify and remove redundant mutants;

6. Identify subsumption relations.

Only Steps 4-6 do not change for all mutation targets.

4.3. Encoding

Next we follow the steps presented in Section 4.2, use the auxiliary functions

presented in Section 4.1, and identify some subsumption relations for some

mutation targets presented in Table 1 using weak mutation testing.
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4.3.1. Boolean Expressions

Next we prove subsumption relations for boolean expressions. For a boolean

expression lexp && rexp (the eighth row of Table 1), we simplify it to x &&

y. We declare x and y as boolean variables in the Z3 Python API (Step 1)

as shown in Listing 8. We can declare other types of variables in Z3 [36]: Int

(integer numbers), Bool (boolean variables), BitVec (bit-vector variables), Real

(real numbers), and so on. In our work, we use Bool, Int, and BitVec with 32

bits. For the x && y target, we do not impose any condition (see first column

of Table 1). So, we declare conds=True in our example.

In Step 2, we specify our program. In Z3, we have the following boolean

operators: And, Or, Not, Implies (implication), If, and so on. In our example,

we use the declared variables and specify our program in Z3: And(x,y) (see

Listing 8).

After declaring variables and a program, we specify all mutants in Step 3.

According to Table 1, the binary expression representing the input program x

and y can derive the following mutants using ODL, VDL, CDL, COR, and COI

operators:

• True (COR true);

• False (COR false);

• x or y (COR ||);

• x (VDL/CDL/ODL(rexp));

• y (VDL/CDL/ODL(lexp));

• not(x and y) (COI !());

• x == y (COR ==);

• x != y (COR !=);

• x xor y (COR ^);

• not(x) xor y (COR COI (!x && y));
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• x xor not(y) (COR COI (x && !y)).

The last two of them are higher-order mutants derived from COR and COI

mutant operators [18]. We consider them to show how to encode them in our

approach. Next we manually specify them using the Z3 boolean operators (see

Listing 8), but this process can be automated.

Listing 8: Identify Subsumption Relations for lexp && rexp target.

# Step 1

x = Bool ( ‘ x ’ )

y = Bool ( ‘ y ’ )

conds = True

# Step 2

p = And(x , y )

# Step 3

muts = [ True , False , Or(x , y ) , x , y ,

Not (p ) , equa l s (x , y ) ,

Not ( equa l s (x , y ) ) , xor (x , y ) ,

xor ( Not ( x ) , y ) , xor (x , Not ( y ) ]

# Step 4

muts = keepNonEquivalentMutants (p , muts )

# Step 5

muts = keepNonRedundantMutants ( muts )

# Step 6

subsumptions = ident i fySubsumpt ions (p , muts , conds )

Next we identify non-equivalent mutants in some targets using the

keepNonEquivalentMutants function (Step 4). For instance, consider the exp

mutation target. Some mutants (exp++, and exp--) are equivalent to the pro-

gram exp in our encoding using weak mutation testing.

We can further reduce the number of mutations by checking whether there

are some mutants that are redundant to other ones in Step 5. We can check this

by calling the keepNonRedundantMutants function passing the set of mutants
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yielded in Step 4. For the lexp && rexp, all four dominant nodes are not

redundant. We find some redundant mutants for other targets, such as −−exp

target. Consider the following set of mutations: AODS(exp), AORS(exp++), and

ODL(exp). The three mutants are redundant. Since they are redundant, for

the −−exp target, we can select one of them (AODS(exp), AORS(exp++), and

ODL(exp)), instead of selecting all of them.

Finally, to identify all subsumption relations in Step 6, we have to call the

identifySubsumptions function passing p, muts, and conds as parameters.

Based on the output, our script automatically derives the following subsump-

tion graph presented in Figure 1 for the mutation target lexp && rexp. We

create a node for each mutation, and an arrow between two nodes, when a mu-

tation subsumes another one. For example, since COR || subsumes COR true, we

specify this subsumption relation by including an arrow between the nodes. For

the lexp && rexp mutation target, our results indicate that we only need to use

the following ones: ODL lexp, VDL lexp, CDL lexp, ODL rexp, VDL rexp, CDL

rexp, COR ==, and COR false. These nodes dominate the others since they do

not have incoming arrows. It is important to mention that ODL exp, and VDL

exp or CDL exp yield syntactic equivalent mutants when we are dealing with

variables or constants. We only need to select one of them. So, we only need to

use four mutations for the following target x and y.

We also automated the process of creating the graph presented in

Figure 1 by using the graphviz Python library. Listing 9 declares the

createSubsRelationGraph function that receives the subsumptions relations

identified by identifySubsumptions, a list of mutations and a dictionary spec-

ifying the names for each mutation.
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Figure 1: Mutation subsumption graph for the lexp && rexp mutation target. Mutations

CDL/VDL/ODL(lexp), CDL/VDL/ODL(rexp), COR ==, and COR false dominate the other

mutations.

Listing 9: Creating the subsumption relation graph.

def createSubRelat ionGraph ( subsumptions , muts , mutNames ) :

graph = Digraph ( ‘G’ )

for m in muts :

graph . node (mutNames [ s t r (m) ] )

for s in subsumptions :

x = mutNames [ s t r ( s [ 0 ] ) ]

y = mutNames [ s t r ( s [ 1 ] ) ]

graph . edge (x , y )

return graph

It is important to mention that prove (see Listing 1) does not yield unknown

as a result in any of the results presented in Table 1. But this scenario can

happen for other mutation targets. When Z3 yields unknown, we cannot identify

subsumed relations. We recommend adding some conditions (conds) to the

variables to avoid unknown in prove. This way, we may identify some useful

subsumption relations for a restricted domain. So, we have confidence in the

results given by the Z3 theorem prover. It takes a few seconds to prove all

relations on a MacBook Pro 2,3 GHz Intel Core i5 with 8GB RAM memory.
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4.3.2. Integer Expressions

Consider the lexp + rexp target (the second row of Table 1). In Step 1,

we declare integer variables x and y (see Listing 10). First, we will not impose

any condition to identify subsumption relations (conds=True), since we do not

have any constraint to this mutation target. We declare the x + y program in

Python using its arithmetic operator. Then, we specify the following mutations

(AORB (2), VDL (2), CDL (2), ODL (2)). Since VDL, CDL, and ODL yield the

same result, we only declare one mutation for them. In this example, we have

four mutations:

• x * y (AORB(*));

• x - y (AORB(-));

• x (VDL/CDL/ODL(rexp));

• y (VDL/CDL/ODL(lexp)).

Listing 10: Identify Subsumption Relations for the lexp + rexp target.

# Step 1

x = Int ( ‘ x ’ )

y = Int ( ‘ y ’ )

conds = True

# Step 2

p = x+y

# Step 3

muts = [ x∗y , x−y , x , y ]

# Step 4

muts = keepNonEquivalentMutants (p , muts )

# Step 5

muts = keepNonRedundantMutants ( muts )

# Step 6

subsumptions = ident i fySubsumpt ions (p , muts , conds )
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We do not find equivalent and redundant mutants in Steps 4 and 5. Step

6 does not identify any subsumption relation for the lexp + rexp target. For

instance, for the test case x=2, y=2, we can kill the AORB(-) mutation, but we

cannot kill the AORB(*) mutation. On the other hand, for the test case x=2,

y=0, we can kill the AORB(*) mutation, but we cannot kill the AORB(-) mutation.

So, all mutations are dominant (see Figure 2) different from the result obtained

by Guimarães et al. [11]. All mutation targets containing integer numbers have

different subsumption graphs from Guimarães et al. [11].

Figure 2: Mutation subsumption graph for the lexp + rexp mutation target. All mutations

are dominant.

However, in case there are some restrictions in the developers’ domain, we

can reduce the number of generated mutants. For instance, suppose that all

numbers are positive (for Z+) in the developers’ domain (see first row of Table 1).

In Step 1, we can specify it (conds = And(x>0,y>0)) using Z3 and Python

operators. We can execute all steps again, and now it yields the subsumption

relation presented in Figure 3. In this setting, the AORB(*) mutation dominates

all other mutations for the lexp + rexp mutation target. Even considering

this condition, the subsumption graph is different from the result obtained by

Guimarães et al. [11], which has a limitation in their technique due to limitations

in using automatic test suite generators.

Figure 3: Mutation subsumption graph for the lexp + rexp mutation target considering

positive integer numbers (for Z+).

20



4.3.3. Expressions containing bitwise operators

For expressions using bits, we follow a similar approach. We declare the

variables x and y as a BitVec with 32 bits. Then we follow the same steps. It is

important to mention that all bitwise operators presented in Table 1 (Mutation

target column) have an equivalent bitwise operator in Python.

4.3.4. Expressions containing assignment operators

For expressions containing assignment operators, consider the lhs &= rhs

target (see second to the last row of Table 1). The encoding is equivalent to the

one presented in Section 4.3.2. In Step 1, we declare BitVec variables x and y

containing 32 bits (see Listing 11). We will not impose any condition to identify

subsumption relations (conds=True), since we do not have any constraint to

this mutation target. The only difference between encoding expressions and

commands is that we update the variable lhs. Since in our program and in

all mutants we only have one variable lhs being updated, we do not need to

specify it in our encoding. In summary, we encode commands in the same way

we encode expressions.
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Listing 11: Identify Subsumption Relations for the lhs &= rhs target.

# Step 1

x = BitVec ( ‘ x ’ ,32)

y = BitVec ( ‘ y ’ ,32)

conds = True

# Step 2

p = x&y

# Step 3

muts = [ y , x | y , xˆy , x ]

# Step 4

muts = keepNonEquivalentMutants (p , muts )

# Step 5

muts = keepNonRedundantMutants ( muts )

# Step 6

subsumptions = ident i fySubsumpt ions (p , muts , conds )

We declare the x &= y program in Python using its bitwise operator. Then,

we specify all mutations using the Python bitwise operators:

• y (ODL (lhs=rhs));

• x|y (ASRS(| =));

• x^y, (ASRS(^=));

• x (SDL).

For the Statement Deletion mutation operator (SDL), it always yields x. Finally,

we execute Steps 4-6 and it yields the subsumption relation graph presented in

Figure 4.

4.4. Lessons Learned

Guimarães et al. [11] used automatic test generators to derive subsumption

relations using strong mutation testing. In this work, we use theorem proving in
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Figure 4: Mutation subsumption graph for the lhs &= rhs mutation target.

the context of weak mutation testing. Since all proofs are automatically done by

the Z3 theorem prover, it is easier and faster to derive the subsumption relations

using the approach presented here. In the approach proposed by Guimarães et

al. [11], we have to generate a number of mutants using MuJava, compile all of

them, generate a number of tests for them, and then analyze all results. It is a

time consuming activity. It takes hours to yield dynamic subsumption relations.

Moreover, we have to rely on good automatic test suite generators. However,

tests only improve confidence in the previous results since we do not have a

proof [29].

In the approach presented here, we only need to encode the program and

mutants (see Listing 8) to prove subsumption relations in few seconds. Ana-

lyzing the values given by the Z3 theorem prover for invalid theorems can help

in this process to better understand why a mutation does not subsume another

one.

By using our approach, we find some differences in the dynamic mutant

subsumption graphs derived by Guimarães et al. [11] that contain integer ex-

pressions. All mutation subsumption relation graphs are different. We find that

we cannot reduce the number of mutations for targets containing integer num-

bers. Since Guimarães et al. [11] rely on the test suite generators that do not

consider all integer values, they find some subsumption relations different from

our work.
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All mutant subsumption relation graphs, proof scripts, and reproducibility

instructions can be found in our notebook [8].

5. Evaluation

In our previous section, we analyze code fragments using weak mutation

testing to derive a minimal set of mutants (see Table 1). This section eval-

uates our subsumption relations in the context of strong mutation testing by

considering a complete program. Offutt and Lee [39] evaluated the effectiveness

versus the efficiency of weak mutation testing. They found that weak mutation

testing can be applied in a manner that is almost as effective as strong mu-

tation testing and with significant computational savings. However the results

using weak mutation testing do not always hold for strong mutation testing.

For instance, Lindström and Márki [29] found that their subsumption relations

for ROR identified using weak mutation testing do not hold for strong mutation

testing.

To analyze to what extent our results hold for complete programs, first we

change MuJava to include the results presented in Table 1 for 24 mutation

targets. This tool is called MuJava-M [11]. Then we compare the results for

MuJava and MuJava-M for a number of mutants generated from real projects

in this section.

This section is organized as follows. First we present our research questions

in Section 5.1. Section 5.2 presents the experimental planning. Section 5.3

explains the experimental procedure. Section 5.4 shows our results. We compare

our technique to random sampling in Section 5.5. Finally, we discuss some

threats to validity in Section 5.6. All data, setups, scripts, and MuJava-M are

available in our companion website [8].

5.1. Research Questions

To better structure our evaluation, we rely on the Goal, Question, Metrics

methodology [3]. The goal of our experiment consists of analyzing our approach,
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implemented by MuJava-M, with the purpose of evaluating the subsumption

relations we found in Z3 with respect to the number of mutants discarded (effort

reduction), and the correctness of this reduction (effectiveness) from the point of

view of testers in the context of applying mutation testing to Java open source

programs (strong mutation testing).

To achieve this goal, we address the following research questions:

RQ1: How many mutants are subsumed (effort reduction)?

To answer this question, we count the number of mutants generated by

MuJava and MuJava-M for each mutation target. Notice that answering RQ1

is important because it allows us to estimate the amount of computational

effort saved. The subsumption relations we embedded in MuJava-M must

be effective. They should not discard important mutants that would be in

a minimal set. To better understand this point, we formulate the following

complementary research question:

RQ2: How many mutants are incorrectly discarded from a minimal set (effec-

tiveness)?

To answer RQ2, we rely on the definition of minimal test set [1]. According

to Amman et al. [1], a minimal test set necessary to kill a minimal mutants set

must also kill all the mutants in the full mutants set. Thus, we generate this

minimal test set and execute against the full mutants set. If a mutant from the

full mutants set survives, this means that we incorrectly discarded this mutant.

We compute the frequency of these cases.

5.2. Planning

We use five large open source programs to carry out our evaluation. Table 3

illustrates the studied programs, i.e., joda-time, commons-math, commons-lang,

h2, and javassist. These programs vary in size and application domain. joda-

time is a time manipulation library. commons-math is a library of mathematics

and statistics components. commons-lang is a package of Java utility classes for
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the classes that are in java.lang’s hierarchy. h2 is a Java SQL-based database.

javassist is class library for editing bytecodes. We performed the evaluation on

Intel Core i5-7400 with 8 GB of RAM equipped with Linux 3.10.0 operating

system. We used MuJava and MuJava-M command-line version. In both

cases, all method-level mutation operators were enabled.

Table 3: Programs used in our evaluation.

Project Version Lines of Code (LOC)

joda-time 2.10.1 28,790

commons-math 3.6.1 100,364

commons-lang 3.6 27,267

h2 1.4.199 134,234

javassist 3.20 35,249

After generating mutants with each tool, we need to calculate the incorrectly

discarded mutants by MuJava-M. Thus, we need to execute a minimal test set

— necessary to kill the MuJava-M mutants — against the mutants gener-

ated by MuJava. To find out the minimal test set, we rely on Evosuite’s [7]

Regression test suite generation (EvosuiteR) version 1.0.6. EvosuiteR is a

specialization of Evosuite that tries to generate one test revealing the differ-

ence between two versions of a Java class. For instance, given two Java classes

with a small syntactic difference in code, say a mutant, EvosuiteR tries to

find a test case that exposes this behavioral difference between the two files.

We set up 60 seconds as the time limit to EvosuiteR generate tests. We used

the default values for the other parameters.

In case the mutant survives the test generated by EvosuiteR, we try to dis-

card equivalent mutant. Equivalent mutants contribute negatively to the confi-

dence assessment of the reduction applied. Unfortunately, detecting equivalent

mutants is a well-known undecidable problem [4]. To minimize this problem,

we avoid some equivalent mutants by using the Trivial Compiler Equivalence

(TCE ) [25]. TCE is a sound tool because it checks whether the bytecodes of the
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original program and the mutant are the same. This eliminates the possibility

of false positives. However, TCE cannot identify equivalent mutants that have

different bytecodes, which may yield false negatives.

In summary, to answer RQ1 and RQ2 the plan is the following: generate

the mutants with MuJava and MuJava-M, then generate the minimal tests

set with EvosuiteR, execute the test generated against the MuJava mutants,

detect equivalence with TCE, and calculate the surviving mutants. Because it

is a computationally costly experiment, we leave the programs running for seven

days for each subject. Consequently, the number of randomly selected files of

each subject varied. In total, we evaluate 125 class files (see Table 4).

5.3. Procedure

We explain how we proceed to answer the research questions RQ1 and RQ2.

A Java class is the MuJava unity of work, thus we need to generate the mutants

for the whole class. Applying all possible mutants to all files in a large program

is clearly infeasible. This way we randomly selected a set of Java class files for

each subject. With the classes selected, we executed MuJava and MuJava-

M against these classes to generate the full set and a minimal set of mutants,

respectively. We enabled all method-level mutation operators in both tools.

Next, we added the mutants of MuJava and MuJava-M grouped by target.

For instance, for each target t in a given class file, MuJava generated the full

set M = {m1,m2,m3,m4} containing all mutants, and MuJava-M generated

a minimal set M̄ = {m1,m2} containing only the sufficient mutants according

to the subsumption relations found previously by our approach (Section 4).

We now proceed to create a minimal test set. As explained, a minimal test

set necessary to kill the minimal mutants set must also kill the full mutants

set [1]. Thus, we use EvosuiteR to create a test case for each mutant in a

minimal set (M̄). We provide the original program and a mutant from M̄ , and

EvosuiteR generates a test containing only one test case to kill the mutant.

We repeat this process for all mutants in M̄ . At the end, we group the generated

tests to create a minimal test suite T̄ for a minimal set of mutants M̄ .
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To validate if the mutants of M̄ indeed represent a minimal mutants set

for the target, we execute T̄ against M . In case all mutants of M get killed,

we confirm that M̄ is a reliable representation of M . But if a mutant of M

survives, it represents a fail in our approach. For example, if only the m1, m2,

and m3 mutants of M are killed by suite T̄ , only 75% of the mutants in the

full set were killed. This means that m4 is a useful mutant and should not be

discarded from a minimal set. An exception occurs when m4 is an equivalent

mutant. In this case m4 is useless to the mutation test. This way, we executed

TCE against the mutants of M that survived to T̄ . If TCE identifies a mutant

as equivalent, we take this mutant out of the analysis. If TCE does not mark a

mutant as equivalent, then we understand that this mutant represents an error

in our reduction and it should be part of the minimal mutant set.

To understand if our approach has eliminated important mutants, we verified

the number of mutants not generated by MuJava-M that should be part of a

minimal set. We also manually verified a subset of these incorrectly deleted

mutants.

To automate the process described before, we create a script that executes

all steps. In some exceptional scenarios we discard the target. Below we list

these scenarios:

• If EvosuiteR cannot identify a test case to distinguish the original pro-

gram and a mutant in a limit of 60 seconds, we did not proceed with the

analysis of the target.

• We execute the minimal test suite against the original program to confirm

they are passing. We repeat this process three times to reduce the presence

of flaky tests [30]. In case we identify flaky tests, or the test suite does

not pass in the original program, we do not proceed with the analysis of

the target.

5.4. Results

Next we answer our research questions.
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5.4.1. RQ1: How many mutants are subsumed (effort reduction)?

Table 4 presents the number of mutants generated by MuJava and MuJava-

M for each subject. In particular, we analyzed 1,403 occurrences of mutation

targets in 125 classes. MuJava generated 6,898 mutants, which gives an average

of 4.92 mutants per target. MuJava-M, in its turn, generated 1,850 mutants

for the same set of mutation targets, i.e., an average of 1.32 mutants per target.

This way, MuJava-M achieved an average reduction of 71.38% in the number

of generated mutants when compared to the original version of MuJava.

Table 4: Number of mutants per subject.

Project Classes MuJava MuJava-M

joda-time 38 2,755 666

commons-math 34 1,282 368

commons-lang 22 1,737 537

h2 11 231 63

javassist 20 893 216

Total 125 6,898 1,850

Table 5 illustrates the occurrences of 18 mutation targets we analyzed in

the 125 classes. The most common target is exp. We identified 1,089 exp

occurrences. The effort reduction rate is 75.80% on average for this target,

respectively.
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Table 5: General results for some targets.

Mutation Target Occurrences Projects Reduction Effectiveness

lexp > rexp 19 4 62.50% 100.00%

lexp >= rexp 26 4 62.50% 100.00%

lexp < rexp 35 4 62.50% 100.00%

lexp <= rexp 16 3 62.20% 100.00%

lexp == rexp 34 2 62.50% 100.00%

lexp != rexp 14 4 62.50% 100.00%

lexp && rexp 13 2 55.56% 100.00%

lexp || rexp 25 4 55.56% 100.00%

lexp & rexp 33 2 64.32% 100.00%

lexp | rexp 6 1 40.00% 100.00%

lexp ^ rexp 6 1 83.33% 100.00%

exp 1,089 5 75.80% 47.20%

!exp 27 4 50.00% 100.00%

-exp 38 4 58.70% 92.68%

~exp 13 2 58.06% 100.00%

exp++ 4 3 71.43% 100.00%

exp-- 4 2 83.33% 66.67%

lhs ^= rhs 1 1 66.67% 50.00%

We achieve significant reductions when considering the total number of gen-

erated mutants (see column “Reduction” in Table 5). However, we may have

discarded important mutants for the mutation analysis. In this sense, to better

understand to what extent our reductions are indeed focusing only on redundant

mutants, we now answer RQ2.

5.4.2. RQ2: How many mutants are incorrectly discarded from a minimal set

(effectiveness)?

Table 5 also presents numbers with respect to the effectiveness of MuJava-

M, i.e., we check whether the mutants discarded by our tool were indeed dis-
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carded correctly. Column “Effectiveness” presents these results. This percent-

age represents the number of mutants generated by MuJava that were killed

by the minimal test set. In the ideal scenario, the minimal test set should kill

all MuJava mutants.

According to Table 5, we achieve 100% of effectiveness in 14 targets. On

the other hand, we achieved only 47.20% of effectiveness for the exp target (the

one more common in the subjects we studied, i.e., 1,089 occurrences). Notice

that exp is a very generic constructor that can be, for example, a variable that

stores the index of an array, i.e., arr[i].

There are some reasons why the results presented in Table 1 for mutation

targets in isolation do not hold for some projects (Table 5). There are scenarios

in which we infect the program state but the infection is not propagated [56].

So we cannot kill the mutants. The changes are not observable for users. It is

an internal change. This is a limitation of weak mutation testing [13]. How-

ever, we also have limitations in the procedure presented in Section 5.3. There

are some challenges in using automatic test suite generators [54, 55]. These

challenges negatively impact on the effectiveness of our approach. For instance,

they may not generate some input values to kill some mutants. So, the test

suite generator cannot infect the program state [56]. There are some limitations

in the automatic test suite generators related to defining oracles [54]. We have

scenarios in which the program state is infected, the infection is propagated,

but we cannot reveal it since we do not have a good oracle. The automatic

test suite generators may generate flaky (unstable) tests [54]. As future work,

we intend to manually analyze our sample, and also consider projects with test

suites created by developers.

Next, we discuss an error when defining a minimal set for an instance of the

target lhs ^= rhs [11]. This target occurred only once in the subjects studied

(see Table 5). Listing 12 presents a code snippet of the BooleanUtils class of

the project commons-lang. At Line 5 of the xor method there is the following

statement: result ^= element. This statement applies an exclusive disjunc-

tion logic operation among all elements of the array. The minimal mutation
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set for this target is made up of just one mutation: ASRS(|=) as presented in

Table 1. However, the minimal test set did not kill the ASRS(&=) mutation.

Listing 12: Code snippet from commons-lang project.

public stat ic boolean xor ( f ina l boolean . . . array ) {

. . .

boolean r e s u l t = fa l se ;

for ( f ina l boolean element : array ) {

r e s u l t ˆ= element ;

}

return r e s u l t ;

}

Lindström and Márki [29] suggested that the subsumption relations cannot

hold when the mutated statements are re-executed (in the context of strong

mutation [6]). If the mutated instruction is executed more than once by any

test execution, we cannot determine the future state of the program. Notice that

the mutation target is inside the for loop (see Listing 12). Since our subsumption

relations were obtained using weak mutation testing, they are not sufficient to

represent the mutation within a repeating context.

In summary, we show that our approach to identify subsumption relations in

Z3 using weak mutation testing (see Section 4) has a good balance between the

effort (sampling rate of 28.62%) required to derive them and the effectiveness

(75.93%) for the targets considered in our evaluation in the context of strong

mutation testing.

5.5. Random Sampling

Gopinath et al. [9] compared the effectiveness of some mutation reduction

strategies to random sampling. In their evaluation, none of the mutation reduc-

tion strategies evaluated produced an effectiveness advantage larger than 5%

in comparison with random sampling. In summary, they argue that mutation

reduction strategies are considered harmful. In this section, we compare our

approach to random sampling.
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We consider the programs presented in Table 3 and targets presented in

Table 5 to evaluate the random sampling strategy. The baseline minimal set

of mutants is defined by joining a minimal set of mutants identified by our

approach, and the set of nonequivalent mutants not killed by our approach.

For each target, we randomly select the mutant set and count the number of

mutants in the baseline minimal set of mutants. To avoid bias, we repeat this

process 100 times and yield the median value.

We use 10 sampling rates from 0 to 100%. Figure 5 presents our results. The

random sampling approach yields an average effectiveness of 75% in correctly

identifying the baseline minimal set of mutants when it uses a sampling rate of

60%. Our approach presented in Section 4 yields an effectiveness of 75.93% when

it uses a sampling rate of 28.62%. This way, different from the results obtained

by Gopinath et al. [9] in their study, using the random sampling strategy is

not a good approach compared to ours. Our reduction mutation strategy is not

considered harmful.
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Figure 5: Comparing our approach to random sampling strategy.
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5.6. Threats to Validity

The set of projects we used represents a threat to external validity. Also,

we did not evaluate all files of all projects. To increase diversity, we consider

projects of different sizes and domains. As another threat to external validity,

we focused only on method-level operators of only one tool, i.e., MuJava for

Java. In some cases MuJava generates mutants that do not compile or fails to

generate some mutants, representing a threat to internal validity.

We only considered in this study mutation targets that did not generate

flaky tests and that EvosuiteR could generate the minimal test sets. This

represents a threat to internal validity. This decision was necessary to assess

the effectiveness of the reductions. The minimal test sets also poses a threat to

internal validity. This is because computing minimal mutant sets for all possible

test sets is computationally hard [1]. Thus, the EvosuiteR can generate the

test set which is minimal but not minimum [1].

The mutants that survived the minimal test sets also represents a threat.

Despite running TCE to identify equivalent mutants, TCE cannot detect all

equivalent mutants due to the undecidability of the Equivalent Mutant Prob-

lem [34].

Some targets did not appear frequently in our evaluation. For instance,

the mutation target lhs ^= rhs, occurred only once. So, the effectiveness of a

minimal set defined for some targets may not hold for general cases. We intend

to perform other studies to evaluate these targets.

6. Related Work

There are some strategies to reduce costs for mutation analysis in the liter-

ature [50]. Kaminski et al. [24] defined the mutant subsumption graphs for six

targets: lexp > rexp, lexp >= rexp, lexp < rexp, lexp <= rexp, lexp ==

rexp, and lexp != rexp. We yield the same minimal set for them. Moreover,

we encode more targets, presented in Table 1, using the Z3 theorem prover. Us-

ing a similar strategy, Just et al. [21] presented sufficient sets of non-redundant
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mutations for the COR and UOI operators. These subsumption hierarchies are

defined by manually analyzing the combinations of all possible input situa-

tions. However, in several other cases, analyzing all possible combinations is

prohibitive due to the high costs. Our approach encodes a theory in Z3 and

uses the Z3 theorem prover to automatically deduce the subsumption relations.

Guimarães et al. [11] proposed an approach to identify subsumption relations

using automatic test suite generators in the context of strong mutation testing.

In contrast, we propose an approach that is simpler to derive subsumption

relations. Indeed, we do not need to generate and compile a number of mutants.

We do not need to automatically generate tests, nor execute them. Instead by

using our theory, we have to encode the program and mutation operators. Then

the Z3 theorem prover automatically proved a number of subsumption relations

for weak mutation testing.

Just and Schweiggert [23] presented a study that analyzes the effect of re-

dundant mutants on mutation analysis efficiency, mutation score, and mutation

coverage ratio. They show that the mutants generated by COR, ROR, and UOI

have a mean ratio of 45% of the total mutants generated. Using the sufficient set

of non-redundant mutations for these operators, the number of mutants was re-

duced by 27% overall. Just and Schweiggert also show that redundant mutants

worsen the accuracy of the mutation score.

Papadakis and Malevris [47] showed that random selection of subsets con-

taining 10%-60% of the generated mutants reduces the ability to detect failures

by 26%-6%, respectively. Offutt et al. [38] presented an empirical approach

to define an appropriate set of selective mutation operators. The idea was to

randomly select a subset of mutation operators [35, 57]. Perez et al. [5] ex-

plored Evolutionary Mutation Testing to reduce the number of mutants to be

executed. Namin et al. [37] formulated the selective mutation problem as a sta-

tistical problem. They applied linear statistical approaches to identify a subset

of 28 mutation operators for C. Some techniques used clustering algorithms to

reduce the number of mutants by selecting only a subset of mutants from each

cluster [16, 14]. Other strategies [17, 28] for reducing costs uses the idea of
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higher order mutants (mutants with more than one syntactic change), which

subsume the behavior of two or more mutants with only one syntactic change,

also known as first order mutants. We show how to encode two higher order

mutants in our approach.

However, in another study, Gopinath et al. [9] found no differences in effec-

tiveness between selective mutation and random selection. The main challenge

in reducing the mutants set is not losing useful information. We show that our

approach has a better effectiveness than the random sampling strategy for the

same sampling rate. Just et al. [22] stated that existing approaches to selective

mutation do not take program context into account, and this is fundamental to

avoid losing useful information.

The high cost of mutation testing creates an entry barrier to its use in

the software industry, but the effectiveness of mutation testing in assessing the

quality of the test suite makes it attractive. Therefore, there is an incentive

to carry out cost-saving studies and alternative ways to use mutation, such as

the approach used by Google, where only one mutant per target is chosen by a

software engineer manually during the code quality inspection [48].

In our work, we propose to use subsumption relationships to reduce costs for

mutation testing. Our approach is related to the selective mutation strategy,

as we use the subsumption relationships found to select the most representa-

tive mutants among all generated mutants. Moreover, we encode a theory of

subsumption relations in Z3, and use its theorem prover to identify a number

of subsumption relations. We focus on identifying subsumption relations using

weak mutation testing. We have to be careful when leveraging our results for

strong mutation testing. Lindström and Márki [29] studied the subsumption

relations between ROR mutants. They showed that ROR fault hierarchies identi-

fied using weak mutation testing do not hold for strong mutation testing. The

problem may be mitigated by avoiding loop structures. We evaluate our ap-

proach in the context of strong mutation testing in Section 5, and show that

our approach has a good balance between the effort required to derive the mu-

tant subsumption relations and the effectiveness for the targets considered in
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our evaluation.

Previous approaches focused on proposing approaches to detect equivalent

mutants [19, 34]. Baldwin and Sayward used compiler optimizations [2] to

detect equivalent mutants by checking whether the original program and the

optimized program are identical. Kintis et al. [25] proposed the Trivial Compiler

Equivalence for C and Java, and mutation tools (Milu and MuJava).

Offut and Pan [41, 42] developed a technique to detect equivalent mutants

based on mathematical constraints that introduce a set of strategies to formulate

the killing conditions of the mutants. If these conditions are not feasible, the

mutant is equivalent. Voas and McGraw [56] and Hierons et al. [12] suggested to

use program slicing to help with equivalence identification. These approaches

suffer from inherent limitations in the scalability of constraint handling and

slicing technology. Grun et al. [10] and Shuller and Zeller [52, 53] proposed that

changes in coverage can be used to detect non-equivalents mutants. Shuler et

al. [51] used invariants violation as a way to classify killable mutants. In our

approach, we defined the function keepNonEquivalentMutants and used the

Z3 theorem prover to identify equivalent mutants using weak mutation testing.

7. Conclusion

In this work, we automatically identify and prove a number of subsumption

relations for method-level mutations using the Z3 theorem prover. Develop-

ers only need to specify the types and mutations in our encoding to identify

subsumption relations (see Listing 8). In few seconds, the Z3 theorem prover

automatically proves a number of subsumption relations for 37 mutation targets.

We reduce the number of mutations in a number of mutation targets containing

integer and boolean expressions. We show some examples on how to encode

them and identify subsumption relations. We can extend our theory to consider

other types of expressions. To evaluate our approach, we extend MuJava with

some of our results and evaluate it in 125 classes of 5 real projects. Our tool

achieves an effectiveness of 75.93% and a sampling rate of 28.62% in the context
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of strong mutation testing. Moreover, we show that our approach is better than

the random sampling strategy.

The results may help to build better mutation testing tools that will allow

to reduce the mutation testing costs. We recommend the community to follow a

similar approach presented here before proposing new mutations. We must pro-

pose new mutations that subsume the previous ones. In this way, developers can

use a minimal set of mutations, hence reducing mutation testing costs. Overall,

our work leverages lightweight formal methods to mutant analysis, resulting in

effective gains for developers.

As future work, we intend to prove more subsumption relations by consider-

ing real numbers, other language constructs and mutations, and encoding more

higher order mutants. It will require to encode the Java semantics of some con-

structions, such as classes and fields. We may encode the Java Featherweight

semantics in Z3 [15] or in other systems in which we can interactively perform

the proofs, such as PVS [43]. In this case, we may address some proofs that

cannot be done (when prove yields unknown) using the Z3 theorem prover. Fi-

nally, the expressions and commands considered in this work for Java have a

similar semantics in other languages, such as Python and C#. We intend to

check whether the subsumption relations found also hold for other languages in

the context.
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